PTA 逆散列问题

给定长度为 N 的散列表,处理整数最常用的散列映射是 H(x)=x%N。如果我们决定用线性探测解决冲突问题,则给定一个顺序输入的整数序列后,我们可以很容易得到这些整数在散列表中的分布。例如我们将 1、2、3 顺序插入长度为 3 的散列表HT[]后,将得到HT[0]=3HT[1]=1HT[2]=2的结果。

但是现在要求解决的是“逆散列问题”,即给定整数在散列表中的分布,问这些整数是按什么顺序插入的?

输入格式:

输入的第一行是正整数 N(≤1000),为散列表的长度。第二行给出了 N 个整数,其间用空格分隔,每个整数在序列中的位置(第一个数位置为0)即是其在散列表中的位置,其中负数表示表中该位置没有元素。题目保证表中的非负整数是各不相同的。

输出格式:

按照插入的顺序输出这些整数,其间用空格分隔,行首尾不能有多余的空格。注意:对应同一种分布结果,插入顺序有可能不唯一。例如按照顺序 3、2、1 插入长度为 3 的散列表,我们会得到跟 1、2、3 顺序插入一样的结果。在此规定:当前的插入有多种选择时,必须选择最小的数字,这样就保证了最终输出结果的唯一性。

输入样例:

11
33 1 13 12 34 38 27 22 32 -1 21

输出样例:

1 13 12 21 33 34 38 27 22 32

 一个很特殊的拓补排序,题意有点难以理解,我同学教了半天我才看懂题目意思

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define IOS ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int n,m,t,k;
int s[100086];
vector<int>g[100086];
int in[100086];
map<int,int>mp;
map<int,int>jl;
vector<int>ve;
signed main(){
	cin >> n;
	priority_queue<int,vector<int>,greater<int> >q;
	for(int i=0;i<n;i++){
		cin >> s[i];
		if(s[i]<0){
			continue;
		}
		if(s[i]%n==i){
			q.push(s[i]);
		}
	}
	for(int i=0;i<n;i++){
		if(s[i]<0)continue;
		if(i<s[i]%n){
			for(int j=s[i]%n;j<n;j++){
				if(j<0)continue;
				in[s[i]]++;
				g[s[j]].push_back(s[i]);
			}
			for(int j=0;j<i;j++){
				if(j<0)continue;
				in[s[i]]++;
				g[s[j]].push_back(s[i]);
			}
		}else{
			for(int j=s[i]%n;j<i;j++){
				if(j<0)continue;
				g[s[j]].push_back(s[i]);
				in[s[i]]++;
			}
		}
	}
	while(!q.empty()){
		int x=q.top();
		ve.push_back(x);
		q.pop();
		for(int i=0;i<g[x].size();i++){
			in[g[x][i]]--;
			if(in[g[x][i]]==0){
				q.push(g[x][i]);
			}
		}
	}
	for(int i=0;i<ve.size();i++){
		if(i!=0)cout << " ";
		cout << ve[i];
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值