给定长度为 N 的散列表,处理整数最常用的散列映射是 H(x)=x%N。如果我们决定用线性探测解决冲突问题,则给定一个顺序输入的整数序列后,我们可以很容易得到这些整数在散列表中的分布。例如我们将 1、2、3 顺序插入长度为 3 的散列表HT[]
后,将得到HT[0]=3
,HT[1]=1
,HT[2]=2
的结果。
但是现在要求解决的是“逆散列问题”,即给定整数在散列表中的分布,问这些整数是按什么顺序插入的?
输入格式:
输入的第一行是正整数 N(≤1000),为散列表的长度。第二行给出了 N 个整数,其间用空格分隔,每个整数在序列中的位置(第一个数位置为0)即是其在散列表中的位置,其中负数表示表中该位置没有元素。题目保证表中的非负整数是各不相同的。
输出格式:
按照插入的顺序输出这些整数,其间用空格分隔,行首尾不能有多余的空格。注意:对应同一种分布结果,插入顺序有可能不唯一。例如按照顺序 3、2、1 插入长度为 3 的散列表,我们会得到跟 1、2、3 顺序插入一样的结果。在此规定:当前的插入有多种选择时,必须选择最小的数字,这样就保证了最终输出结果的唯一性。
输入样例:
11
33 1 13 12 34 38 27 22 32 -1 21
输出样例:
1 13 12 21 33 34 38 27 22 32
一个很特殊的拓补排序,题意有点难以理解,我同学教了半天我才看懂题目意思
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define IOS ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int n,m,t,k;
int s[100086];
vector<int>g[100086];
int in[100086];
map<int,int>mp;
map<int,int>jl;
vector<int>ve;
signed main(){
cin >> n;
priority_queue<int,vector<int>,greater<int> >q;
for(int i=0;i<n;i++){
cin >> s[i];
if(s[i]<0){
continue;
}
if(s[i]%n==i){
q.push(s[i]);
}
}
for(int i=0;i<n;i++){
if(s[i]<0)continue;
if(i<s[i]%n){
for(int j=s[i]%n;j<n;j++){
if(j<0)continue;
in[s[i]]++;
g[s[j]].push_back(s[i]);
}
for(int j=0;j<i;j++){
if(j<0)continue;
in[s[i]]++;
g[s[j]].push_back(s[i]);
}
}else{
for(int j=s[i]%n;j<i;j++){
if(j<0)continue;
g[s[j]].push_back(s[i]);
in[s[i]]++;
}
}
}
while(!q.empty()){
int x=q.top();
ve.push_back(x);
q.pop();
for(int i=0;i<g[x].size();i++){
in[g[x][i]]--;
if(in[g[x][i]]==0){
q.push(g[x][i]);
}
}
}
for(int i=0;i<ve.size();i++){
if(i!=0)cout << " ";
cout << ve[i];
}
return 0;
}