电气控制及可编程控制器实验报告 实验四 用 PLC 实现电机的正反转控制和 Y-△降压起动控制

电气控制及可编程控制器实验报告

    

实验四 PLC 实现电机的正反转控制和 Y-△降压起动控制

一.实验目的

1. 掌握由传统继电接触控制转为 PLC 控制的方法。

2. 熟练掌握编程软件的使用方法。

3. 掌握用 PLC 实现电机正反转控制的方法。

4. 运用 PLC 实现电动机 Y-Δ起动控制。

二. 实验说明

1. 根据图示梯形图及外部 I/O 接线图,要求运用 PLC 技术并借助模拟实验装置来实现电机正反转的控制。

双向控制电路要求 2 个接触器 QA1QA2 不能同时得电,否则会造成电机电源的短路。

l 在梯形图上,Y0 Y1 的线圈上串接对方的常闭触点,进行互锁。当 Y0 线圈得电时,其常闭触点断开,使 Y1 线圈不可能得电,只有 Y0 断电时,Y1 线圈才可能得电;反之亦然。

l X0 X1 的常闭触点用来实现按钮联锁。

l 外部接线图中 QA1QA2 线圈上互相串接对方常闭触点也起互锁作用,这样可以确保在任何情况下(如某一接触器主触点熔焊),2 个接触器都不会同时接通。

2. 运用 PLC 技术并借助模拟实验装置来实现三相交流异步电动机的 YΔ 起动模拟控制。

三.实验内容

1. 确定输入输出地址,绘制I/O接线图并进行接线操作。

2. 利用编程软件编写梯形图程序,并将其下载至PLC中。

3. 启动程序,实时监控并检验运行结果,若发现偏差则进行必要的修改和调试。

三. 实验步骤

(一)正反转控制

1.输入输出接线。

2.打开主机电源将程序下载到主机中。

3.启动并运行程序观察实验现象。

4. 按正向起动按钮 SF1,观察并记录电动机的转向和接触器的运行情况。

5. 按反向起动按钮 SF2,观察并记录电动机和接触器的运行情况。

6. 按停止按钮 SF3,观察并记录电动机的转向和接触器的运行情况。

7. 再按 SF2,观察并记录电动机的转向和接触器的运行情况。

数据集介绍:野生动物与家畜多目标检测数据集 数据集名称:野生动物与家畜多目标检测数据集 数据规模: - 训练集:1,540张图片 - 验证集:377张图片 - 测试集:316张图片 分类类别: Brown-bear(棕熊)、Chicken(鸡)、Fox(狐狸)、Hedgehog(刺猬)、Horse(马)、Mouse(老鼠)、Sheep(绵羊)、Snake(蛇)、Turtle(龟)、Rabbit(兔)及通用object(物体)共11个类别 标注格式: YOLO格式标注,包含归一化坐标与类别索引,支持目标检测模型训练 数据特性: 涵盖航拍与地面视角,包含动物个体及群体场景,适用于复杂环境下的多目标识别 农业智能化管理: 通过检测家畜(鸡/马/绵羊等)数量及活动状态,辅助畜牧场自动化管理 生态监测系统: 支持野生动物(棕熊/狐狸/刺猬等)识别与追踪,用于自然保护区生物多样性研究 智能安防应用: 检测农场周边危险动物(蛇/狐狸),构建入侵预警系统 动物行为研究: 提供多物种共存场景数据,支持动物群体交互行为分析 高实用性标注体系: - 精细标注包含动物完整轮廓的边界框 - 特别区分野生动物与家畜类别,支持跨场景迁移学习 多维度覆盖: - 包含昼间/复杂背景/遮挡场景 - 涵盖陆地常见中小型动物与禽类 - 提供通用object类别适配扩展需求 工程适配性强: - 原生YOLO格式适配主流检测框架(YOLOv5/v7/v8等) - 验证集与测试集比例科学,支持可靠模型评估 生态价值突出: - 同步覆盖濒危物种(龟类)与常见物种 - 支持生物多样性保护与农业生产的双重应用场景
内容概要:本文档详细介绍了Python实现TSO-ELM(金枪鱼群优化算法优化极限学习机)多输入单输出回归预测的项目实例。极限学习机(ELM)作为一种快速训练的前馈神经网络算法,虽然具有训练速度快、计算简单等优点,但也存在局部最优解参数敏感性的问题。金枪鱼群优化算法(TSO)通过模拟金枪鱼群体觅食行为,具有较强的全局搜索能力。将TSO与ELM结合形成的TSO-ELM模型,可以优化ELM的输入层隐藏层之间的权重,提高回归预测的准确性。项目包括数据预处理、TSO优化、ELM回归模型训练预测输出个主要步骤,并提供了详细的代码示例。; 适合人群:对机器学习、优化算法有一定了解的数据科学家、算法工程师研究人员,特别是那些希望深入理解智能优化算法在回归预测任务中的应用的人群。; 使用场景及目标:① 提升ELM在多输入单输出回归预测中的性能,特别是在处理非线性问题时的预测精度;② 解决ELM中的局部最优解参数敏感性问题;③ 优化ELM的隐层权重偏置值,提高模型的表达能力预测能力;④ 在金融、气象、能源、医疗、交通等领域提供更准确的预测模型。; 阅读建议:本文档不仅提供了理论解释,还包含详细的代码实现,建议读者在阅读过程中结合代码进行实践,理解TSO-ELM模型的工作原理,并尝试调整参数以优化预测效果。同时,读者应关注TSO算法在高维复杂问题中的应用挑战,思考如何改进优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值