一、核心知识点总结
1. 基本公式与推导
交换二次积分次序的核心公式为:
推导步骤:
- 确定原积分区域:根据原积分上下限写出区域 D的不等式组,例如 D={(x,y)∣a≤x≤b,c(x)≤y≤d(x)}。
- 画积分区域草图:在直角坐标系中绘制D,标出边界曲线及交点。
- 重新划分积分次序:用“穿线法”确定新的积分限(先积分的变量范围是常数或关于后积分变量的函数)。
2. 衍生的公式与技巧
- 柯西迭代积分公式:若被积函数可分离为 f(x)g(y),则二重积分可分解为两个单积分的乘积(需验证积分区域为矩形)。
- 极坐标转换:若积分区域为圆形或扇形,可转换到极坐标系下简化计算(但考研中极少考查极坐标的积分次序交换)
二、例题解析(简易题):
三、高难度例题精讲
例题1(易错题)
例题2(综合题)
例题3(扩展题--极坐标)
四、易错点与解题方法总结
1. 易错点
- 区域绘制错误:未准确画出积分区域导致积分限错误(需标出所有边界曲线及交点)。
- 忽略负号:当新积分下限大于上限时,需调整积分限并添加负号(例如例题1)。
- 拆分不当:复杂区域需拆分为多个子区域,避免遗漏部分积分范围。
- 积分限错误:混淆先积变量与后积变量的上下限。
- 极坐标转换错误:忽略面积元素r*dr*dθ或错误转换变量。
2. 解题方法
- 步骤口诀:
-
画图确定积分区域:
画出积分区域D的草图,标出所有边界曲线及交点坐标。 -
确定新积分次序:
根据原积分上下限,将X型转换为Y型或反之。例如:- X型→Y型:确定y的范围后,对每个y找到x的范围。
- Y型→X型:确定x的范围后,对每个x找到y的范围。
-
重新确定积分限:
通过“后积先定限,先交为下限,后交为上限”原则确定新积分限
-
- 核心技巧:
- 当被积函数含
等无法直接积分的形式时,必须交换次序。
- 遇到绝对值或分段函数时,需拆分积分区域
- 当被积函数含