让我们定义dn为:dn=pn+1−pn,其中pi是第i个素数。显然有d1=1,且对于n>1有dn是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N
(<105),请计算不超过N
的满足猜想的素数对的个数。
输入格式:
输入在一行给出正整数N
。
输出格式:
在一行中输出不超过N
的满足猜想的素数对的个数。
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
// 判断一个数是否为素数的函数
int isPrime(int i){
// 从2循环到i的平方根
for(int j=2;j<=sqrt(i);j++){
// 如果i能被j整除,则i不是素数,返回0
if(i%j==0) return 0;
}
// 如果没有找到能整除i的数,则i是素数,返回1
return 1;
}
// 打印并计算小于等于N的素数对的数量
int printPrime(int N){
int sum=0; // 初始化计数器,用于统计素数对的数量
// 从4开始循环到N,因为最小的素数对是(3, 5)
for(int i=4;i<=N;i++){
// 检查当前数i和i-2是否都是素数
if(isPrime(i)&&isPrime(i-2)){
// 如果是,则将计数器加1
sum++;
}
}
// 返回找到的素数对的数量
return sum;
}
// 主函数,程序的入口
int main(){
long long N; // 定义一个长整型变量N
// 从标准输入读取一个长整型数到N
scanf("%lld",&N);
// 调用printPrime函数,并打印返回的素数对数量
printf("%d",printPrime(N));
// 程序正常结束,返回0
return 0;
}