算法学习笔记(动态规划——01背包)

先来聊聊动态规划,动态规划是分治法的一种体现,把一个问题分解成若干个子集,通过当前状态,经过操作得到下一个状态,最后得到最优问题解的一种方法。

步骤:

  1. 设定状态,保存状态
  2. 根据状态设定转移方程
  3. 确定边界

其中的01背包解决的是关于选择的动态规划问题, 0 0 0 1 1 1 代表的是选与不选。

以这道经典01背包例题采药展开讲解:

采药 - StarryCoding | 踏出编程第一步

题目描述

辰辰是个很有潜能、天资聪颖的孩子,他的梦想是称为世界上最伟大的医师。

为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。

医师把他带到个到处都是草药的山洞里对他说:

“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。

我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”

如果你是辰辰,你能完成这个任务吗?

输入描述

输入的第一行有两个整数 T ( 1 ≤ T ≤ 1000 ) T(1 \le T \le 1000) T(1T1000) M ( 1 ≤ M ≤ 100 ) M(1 \le M \le 100) M(1M100) , T T T 代表总共能够用来采药的时间, M M M 代表山洞里的草药的数目。

接下来的M行每行包括两个在 1 1 1 100 100 100 之间(包括 1 1 1 100 100 100 )的整数,分别表示采摘某株草药的时间和这株草药的价值。

输出描述

可能有多组测试数据,对于每组数据:

输出只包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。

先思考暴力的做法,就是把所有组合都枚举出来,从中选择最优解,这个解法有一个很明显的问题:复杂度支撑不了我们在短时间内求解。

有没有什么办法能优化呢?有些同学会想到贪心,贪心的想法其实没错,显然我要提高采药时间的利用率,那我们直接选取性价比最高的采药来采即可。也就是说,优先采价值与时间之比较大的草药。但是这个解法真的可行吗?其实是有一点问题的,由于我们只能采一整株草药,我们的时间中可能会有剩余部分,不足以支持我们采更多的草药,这些剩余部分就会降低我们的利用率。

最后还是需要每株草药都考虑进去嘛。到底如何枚举才能使我们又快又准确的知道答案呢?这就是我们今天要研究的:动态规划——01背包。

大家知道,我们做动态规划都需要先确定状态和状态转移方程。在这个问题中,我们可以规定这样一个二维的状态数组 d p [ N ] [ M ] dp[N][M] dp[N][M] ,其中 d p [ i ] [ j ] dp[i][j] dp[i][j] 代表的是我们在对第 i i i 个草药进行选择的时候,在 j j j 时间内,可以取得的最大价值。接下来我们可以根据这个状态设计出状态转移方程: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − t i ] + v i ) dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - t_i] + v_i) dp[i][j]=max(dp[i1][j],dp[i1][jti]+vi)

因为我们取第 i i i 个草药时,如果能取,则需要占用 t i t_i ti 的时间,所以通过对 d p [ i ] [ j ] dp[i][j] dp[i][j](不取这个草药)与往前推移 t i t_i ti 时间中的价值(也就是前 i i i 个草药中取这个草药前能取到的最大价值)再加上这个草药的价值进行比较来抉择出最优选择方案。

接下来只需要抉择完所有草药之后,输出 d p [ M ] [ T ] dp[M][T] dp[M][T] (在对第 M M M 个草药进行选择的时候,在 T T T 时间内,可以取得的最大价值)就可以得到答案了。

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const ll p = 1e9 + 7;

ll T, M;

ll dp[105][1010];

ll t[105], v[106];

void solve()
{
    for(int i = 1; i <= M; ++i) cin >> t[i] >> v[i];

    for(int i = 1; i <= M; ++i) 
    {
        for(int j = 0; j <= T; ++j)
        {
            if(j >= t[i]) dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - t[i]] + v[i]);
            else dp[i][j] = dp[i - 1][j];
        }
    }
    cout << dp[M][T] << '\n';
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);

    while(cin >> T << M)
    {
        if(T == 0 && M == 0) break;
        solve();
    }

    return 0;
}

不急,还没结束。

我们可以发现的是,在外面转移状态的时候,最新的状态只与取上一个草药时的状态有关,那我们是否可以将数组的第二维优化到 2 2 2 。也就是将状态数组优化成 d p [ T ] [ 2 ] dp[T][2] dp[T][2]

这涉及到滚动数组的概念:

从上面的数组转移到下面,再从下面的数组转移到上面,循环往复。也就是 d p [ T ] [ 1 ] dp[T][1] dp[T][1] d p [ T ] [ 0 ] dp[T][0] dp[T][0] 转移过来, 新的 d p [ T ] [ 0 ] dp[T][0] dp[T][0] 又从刚刚得到的 d p [ T ] [ 1 ] dp[T][1] dp[T][1] 中转移过来。

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const ll p = 1e9 + 7;
//滚动数组优化

ll T, M;

ll dp[2][1010];

ll t[105], v[106];

void solve()
{
    for(int i = 0; i <= T; ++i) dp[0][i] = 0;

    for(int i = 1; i <= M; ++i) cin >> t[i] >> v[i];

    for(int i = 1; i <= M; ++i) 
    {
        int x = i & 1;
        for(int j = 0; j <= T; ++j)
        {
            if(j >= t[i]) dp[x][j] = max(dp[x ^ 1][j], dp[x ^ 1][j - t[i]] + v[i]);
            else dp[x][j] = dp[x ^ 1][j];
        }
    }
    cout << dp[M & 1][T] << '\n';
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);

    while(cin >> T << M)
    {
        if(T == 0 && M == 0) break;
        solve();
    }

    return 0;
}

最后,能不能不要这第二维,直接用一维的数组去表示呢。当然是可以的。因为我们在进行状态转移的时候,是由前面的原状态得到后面的新状态。在二维中就是由左上角的某个数字转移过来得到右下角的某个数字。而这个原状态,就是在经历过上一次转移之后的状态数组中有的。为了不影响后续的转移,直接从后往前转移就可以省略掉这第二维。

转移方程变成了: d p [ j ] = m a x ( d p [ j ] , d p [ j − t i ] + v i ) dp[j] = max(dp[j], dp[j - t_i] + v_i) dp[j]=max(dp[j],dp[jti]+vi)

#include<bits/stdc++.h>
using namespace std;
const int N = 1009;

int dp[N];
int T, M;

void solve()
{
    for(int i = 1; i <= M; ++i)
    {
        int t, v; cin >> t >> v;
        for(int j = T; j >= t; --j)
        {
            dp[j] = max(dp[j], dp[j - t] + v);
        }
    }
    cout << dp[T] << '\n';
   	memset(dp, 0, sizeof(int) * (T + 1));
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    while(cin >> T >> M)
    {
     	if(!T && !M) break;
        solve();
    }
    return 0;
}

实际应用:动态规划中取或不取的背包问题(01背包问题)

更详细内容可以看看starrycoding中的算法基础课,联系笔者可以获得八折优惠(真妹卖课,只是这课真的很好,推荐给大家)。

后续内容持续更新中~

  • 17
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
好的,我知道了,下面是我的回答: 聚类算法是一种无监督学习算法,它可以将数据集中的数据按照某种规则进行分组,使得同一组内的数据相似度较高,不同组之间的数据相似度较低。聚类算法可以帮助我们对数据进行分类、分析和理解,同时也可以为其他机器学习任务提供数据预处理和特征提取的支持。 聚类算法的基本流程包括:确定聚类算法的目标函数、选择相似度度量方法、选择聚类算法、确定聚类的数量、进行聚类操作以及评估聚类效果。常见的聚类算法包括K-Means算法、层次聚类算法、密度聚类算法等。 K-Means算法是一种基于距离的聚类算法,它的基本思想是将数据集中的数据划分为K个簇,使得同一簇内的数据相似度较高,不同簇之间的数据相似度较低。K-Means算法的优点是计算复杂度较低,容易实现,但是需要预先指定簇的数量和初始聚类中心。 层次聚类算法是一种基于相似度的聚类算法,它的基本思想是不断合并数据集中相似度最高的数据,直到所有数据都被合并为一个簇或达到预先设定的簇的数量。层次聚类算法的优点是不需要预先指定簇的数量和初始聚类中心,但是计算复杂度较高。 密度聚类算法是一种基于密度的聚类算法,它的基本思想是将数据集中的数据划分为若干个密度相连的簇,不同簇之间的密度差距较大。密度聚类算法的优点是可以发现任意形状的簇,但是对于不同密度的簇分割效果不佳。 以上是聚类算法的基础知识,希望能对您有所帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值