算法学习笔记(最短路——Floyd)

F l o y d − W a r s h a l l Floyd-Warshall FloydWarshall算法,简称 F l o y d Floyd Floyd算法

特点:

  1. 多源最短路算法,能一次性求得所有节点之间的最短距离。
  2. 效率不高,不能用于大图(算法复杂度为 O ( n 3 ) O(n ^ 3) O(n3),一般用于)。
  3. 代码简单
  4. 可以判断负环(之后解释)
  5. 存图时一般用临接矩阵存图。

F l o y d Floyd Floyd算法的原理:

从小图扩张到全图。

很容易看出这是动态规划的思想,定义 d p [ k ] [ i ] [ j ] dp[k][i][j] dp[k][i][j]:以点 k k k为中继点(如果有更优则不做中继点)的点对 ( i , j ) (i, j) i,j间的最短路径。

得出动态转移方程: d p [ k ] [ i ] [ j ] = m i n ( d p [ k − 1 ] [ i ] [ j ] , d p [ k − 1 ] [ i ] [ k ] + d p [ k − 1 ] [ k ] [ j ] ) dp[k][i][j] = min(dp[k - 1][i][j], dp[k - 1][i][k] + dp[k - 1][k][j]) dp[k][i][j]=min(dp[k1][i][j],dp[k1][i][k]+dp[k1][k][j])

因为是以 k k k为中继点,所以以点 i i i到点 k k k的距离加上点 k k k到点 j j j与更新至现在点 i i i j j j的最短距离作比较,更新出更新的最短路径。


代码也是相当简洁:

for(int k = 1; k <= n; ++k)
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= n; ++j)
            dp[k][i][j] = min(dp[k - 1][i][j], 
                            dp[k - 1][i][k] + dp[k - 1][k][j]);

由于第 k k k个状态只与第 k − 1 k - 1 k1个状态有关,故可以将 k k k这一维优化掉。

最终代码:

for(int k = 1; k <= n; ++k)
    for(int i = 1; i <= n; ++i)
        for(int j = 1; j <= n; ++j)
            dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);

判断负环是什么原理呢,就是看更新完成之后,存不存在 d p [ i ] [ j ] dp[i][j] dp[i][j](其中 i = j i = j i=j,也就是从自己走到自己)的距离为负,因为正常自己走到自己最短是不走,出现负路径只能是存在负环了。

一起看看例题:无穷背【模板】最短路(3) - StarryCoding | 踏出编程第一步

题目描述

给定一个 n n n个点、 m m m条边的有向图。

再给出 q q q次询问,每个询问为两个整数 u i u_i ui v i v_i vi,你需要回答从 u i u_i ui v i v_i vi的最短距离。

输入格式

第一行:三个整数 n , m , q n,m,q n,m,q ( 1 ≤ n ≤ 300 , 1 ≤ m , q ≤ 1 0 5 ) (1 \le n \le 300,1 \le m,q \le 10^5) 1n3001m,q105

接下来 m m m行:每行三个整数 u i , v i , w i u_i,v_i,w_i ui,vi,wi,表示存在一条从 u i u_i ui v i v_i vi,权值为 w i w_i wi的有向边。 ( 1 ≤ u i , v i ≤ n , 0 ≤ w i ≤ 1 0 6 ) (1 \le u_i,v_i \le n,0 \le w_i \le 10^6) 1ui,vin0wi106可能存在重边和自环。

再接下来 q q q行,每行两个整数 u i , v i u_i,v_i ui,vi,表示查询从 u i u_i ui v i v_i vi的最短距离。

输出格式

q q q行:每行一个整数,表示查询的最短距离;若不存在路径,则输出 − 1 −1 1


模板题就不细讲了,把上面的 F l o y d Floyd Floyd代码用进去就行了。

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const int N = 309;
const ll inf = 1e16;

ll dp[N][N];

void solve()
{
    int n, m, q; cin >> n >> m >> q;
    
    //不要忘记初始化
    for(int i = 1; i <= n; ++i)
    {
        for(int j = 1; j <= n; ++j)
        {
            dp[i][j] = inf;
            if(i == j) dp[i][j] = 0;    //单独处理自己走到自己的情况,调用Floyd算法后dp[i][i]不等于0
        }
    }

    for(int i = 1; i <= m; ++i)
    {
        int u, v;
        ll w; cin >> u >> v >> w;
        dp[u][v] = min(dp[u][v], w);     //处理重边
    }

    for(int k = 1; k <= n; ++k)
        for(int i = 1; i <= n; ++i)
            for(int j = 1; j <= n; ++j)
                dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);

    while(q--)
    {
        int x, y; cin >> x >> y;
        cout << (dp[x][y] == inf ? -1 : dp[x][y]) << '\n';
    }
}

int main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int _ = 1;
    while(_--) solve();
    return 0;
}

实际应用:小图全原最短路。

  • 9
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值