本节完成作文结构智能优化功能,包含逻辑链分析,自动识别文章结构,提供逻辑优化建议,如如何增强论据的层次性。段落优化建议,针对性提供段落调整方案,提高文章连贯性。
一、文章结构优化
采用与批改文章相同逻辑,前端获取上下文后传给后端,后端使用事先写入的prompt文件,调用DeepSeek API接口。prompt文件中根据任务需求进行详细设定,也可采用多个prompt文件构成CoT思维链来进行调用DeepSeek API,是结果更符合需求。
经实现后测试,结果如图所示,可以看到成功调用API并得到结果。
但在运行中发现,由于调用的是DeepSeek-R1的模型,存在着思考过程的内容,而这是我们所不需要的,于是决定对API的回答加一个清理过程,用来剔除所有的思考环节。
二、API回答清洗
通过网上搜索得知,DeepSeek-R1返回结果中,思考环节会有一个<think>标签用来表明,于是决定采用先获取API回答,之后对API回答中带有<think>标签的内容进行剔除。
在原代码中加入:
import re
其中Python的re模块是Python标准库Python标准库Python标准库中用于正则表达式操作的一个强大工具。正则表达式是一种文本模式描述的方法,它可以用来检查一个字符串是否与某种模式匹配,或者用于提取、替换、分割字符串等操作。
准备采用正则表达式来进行匹配剔除不需要的内容。
之后定义方法:
def remove_think_block(text):
return re.sub(r'<think>.*?</think>\n?', '', text, flags=re.DOTALL)
此方法的目标是删除文本中所有 <think>...</think> 标签及其内部内容,同时可能移除标签后的换行符(\n)。
正则表达式 r'<think>.*?</think>\n?' 是关键,其设计包含以下细节:
<think> 和 </think>:直接匹配这两个固定标签的字符串。
.*?:
. 表示匹配任意字符(默认不含换行符,但 flags=re.DOTALL 会覆盖此限制,允许匹配换行符)。
*? 是非贪婪匹配,确保匹配最短的 <think>...</think> 块,避免跨多个标签的错误。例如,若文本中有多个 <think> 块,非贪婪模式会逐个匹配而非合并成一个整体。
\n?:匹配标签后可能存在的换行符(0或1次),从而避免删除标签后留下多余空行。
re.sub(pattern, repl, string, count=0, flags=0)
pattern:即上述正则表达式。
repl:替换为空字符串 ' ',即删除匹配内容。
flags=re.DOTALL:
此标志允许 . 匹配包括换行符在内的所有字符,确保 <think> 和 </think> 之间的多行内容被完整删除。
之后整合进我们之前的代码中:
result = response.json()
response.raise_for_status()
api_result = result["choices"][0]["message"]["content"]
cleaned_api_response = remove_think_block(api_result)
而在返回中则使用被清洗后的回答:
return jsonify({
"result": cleaned_api_response
})
进行测试对比:
无清洗思考过程之前:
思考过程清洗之后:
可以看到直接得到了结果,而将之前所有的思考过程内容进行了清理。