参加datawhale的共学活动,通过写笔记记录一下
绪论
- 机器学习的前提:数据
- 当想要预测的是离散值时,这类学习任务被称为分类,反之但我们预测的是连续值,这类学习任务称之为回归。
- 当只涉及到两个类别时,通常把一个类称为正类一个称为反类
- 学习模型后,进行预测的过程称为测试,被预测得样本称为测试样本
- 机器学习的目标在于提高模型的泛化能力
泛化能力:学得模型适用于新样本的能力
1.选择模型
奥卡姆剃须刀:若有多个假设与观察一致,则选最简单的那个
2.NFL定理
NFL定理表明抛开具体问题选择模型不合理
模型评估和选择
错误率:分类错误的样本数占样本总数的比例
过拟合:常是因为学习能力过于强大以至于把训练样本所包含的不太一般的特性学到了
欠拟合:常由学习能力低下导致
泛化能力的评估:一般通过设置测试集进行评价
测试集的产生一般涉及一下方法:
- 留出法
通过将数据集划分为两个互斥的组合,常用的三七分 - 交叉验证法
- 自助法(bootstrapping)
准确率、召回率与F1:
准确率、召回率:
F1:
总结:
篇章二:实在是难度大,我还得学一会
绪论部分就已经足够硬核,当然主要是还是自己的数学基础太差。还需要好好理解公式
总之很感谢datawhale能够给我一个机会推动我去学习西瓜书