714. 买卖股票的最佳时机含手续费 - 力扣(LeetCode)
给定一个整数数组 prices
,其中 prices[i]
表示第 i
天的股票价格 ;整数 fee
代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2 输出:8 解释:能够达到的最大利润: 在此处买入 prices[0] = 1 在此处卖出 prices[3] = 8 在此处买入 prices[4] = 4 在此处卖出 prices[5] = 9 总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2:
输入:prices = [1,3,7,5,10,3], fee = 3 输出:6
提示:
1 <= prices.length <= 5 * 104
1 <= prices[i] < 5 * 104
0 <= fee < 5 * 104
思路
依旧是动态规划的问题,那么首先要确认状态转移方程,这次相比于之前多了一个手续费,只要在每次卖出的时候减去这个手续费就可以了
当我买入股票的时候,就是比较之前没有股票时候的状态(dp[1]-prices[i])和不买入这只股票(dp[0])的大小;这里在持有股票的时候之所以用dp[1]是因为,dp[1]是卖出股票之后的状态,也就是这个时候是没有股票在身上的,所以用dp[1]来减去买股票时用的钱
当我想卖出股票的时候,就是比较持有股票时候(dp[0]+prices[i]-fee)和不卖出股票时候(dp[1])的状态
完整代码
class Solution {
public int maxProfit(int[] prices, int fee) {
int n = prices.length;
int []dp = new int[2];
dp[0] = -prices[0];//买入
dp[1] = 0;//卖出
for (int i = 1; i < prices.length; i++) {
dp[0] = max(dp[1]-prices[i],dp[0]);
dp[1] = max(dp[0]+prices[i]-fee,dp[1]);
}
return dp[1];
}
public static int max(int a,int b){
return a>b?a:b;
}
}