算法入门-深度优先搜索3

第六部分:深度优先搜索

112.路径总和(简单)

题目:给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false

叶子节点 是指没有子节点的节点。

示例 1:

输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。

示例 2:

输入:root = [1,2,3], targetSum = 5
输出:false
解释:树中存在两条根节点到叶子节点的路径:
(1 --> 2): 和为 3
(1 --> 3): 和为 4
不存在 sum = 5 的根节点到叶子节点的路径。

示例 3:

输入:root = [], targetSum = 0
输出:false
解释:由于树是空的,所以不存在根节点到叶子节点的路径。

第一种思路:

  1. 空节点检查

    • if (root == null) return false;

    • 这行代码确保在递归过程中,如果当前节点为空,函数将返回 false。这是基础的边界条件,防止在空节点上进行操作。

  2. 叶子节点检查

    • if (root.left == null && root.right == null) { return root.val == targetSum; }

    • 这段代码检查当前节点是否为叶子节点(即没有左子节点和右子节点)。如果是叶子节点,函数将检查当前节点的值是否等于 targetSum。如果相等,返回 true,表示找到了一个有效路径;否则返回 false

  3. 更新目标和并递归

    • targetSum -= root.val;

    • 这行代码更新 targetSum,减去当前节点的值。这样做是为了在递归调用时,检查从根节点到当前节点的路径和是否能达到目标值。

    • return hasPathSum(root.left, targetSum) || hasPathSum(root.right, targetSum);

    • 这行代码递归地检查左子树和右子树,返回两个子树中任意一个是否存在有效路径的结果。如果左子树或右子树中有路径和等于 targetSum,则返回 true

一开始在下面的条件判断时,

        

// 如果当前节点为空,返回 false  
if (root == null) return false;  

我添加了如下条件,但是如果再添加这些条件,会遗漏一些情况。

//第一种
if(root == null || root.val - targetSum > 0)    return false;
//这个条件会导致一些不必要的返回 false 的情况。比如,如果 root.val 是负数,而 targetSum 是正数,可能会导致错误的判断。这个条件并不是判断路径和是否可能的有效方式。

//第二种
if(root == null || Math.abs(root.val) > Math.abs(targetSum))    return false;
//root.val - targetSum > 0 这个条件的意图是检查当前节点的值是否大于目标和。这会导致以下问题:
//漏掉负数路径:如果树中存在负数节点,可能会导致路径和在某些情况下仍然可以达到 targetSum,但由于当前节点的值大于目标和而被错误地返回 false。
//不考虑路径的累积和:这个条件只比较当前节点的值与目标和,而没有考虑到从根节点到当前节点的路径和。路径和是由多个节点的值累积而成的,单独比较当前节点的值是不够的。
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {  
    public boolean hasPathSum(TreeNode root, int targetSum) {  
        // 如果当前节点为空,返回 false  
        if (root == null) return false;  

        // 如果当前节点是叶子节点,检查路径和是否等于目标值  
        if (root.left == null && root.right == null) {  
            return root.val == targetSum;  
        }  

        // 递归检查左右子树,更新目标值  
        targetSum -= root.val;  
        return hasPathSum(root.left, targetSum) || hasPathSum(root.right, targetSum);  
    }  
}

113.路径总和II(中等)

题目:给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。

叶子节点 是指没有子节点的节点。

示例 1:

输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:[[5,4,11,2],[5,8,4,5]]

示例 2:

输入:root = [1,2,3], targetSum = 5
输出:[]

第一种思路:

要找到从根节点到叶子节点的所有路径总和等于给定目标和的路径,需要在递归过程中维护当前路径,并在到达叶子节点时检查路径和是否等于目标和。此外,还需要在返回时移除当前节点的值,以便在回溯时不会影响其他路径。

这种方法有效地使用深度优先搜索(DFS)来查找所有有效路径,同时通过回溯确保探索所有潜在路径。

  1. 初始化pathSum 方法初始化了两个列表:list 用于存储所有有效路径,tempList 用于跟踪当前正在探索的路径。

  2. 递归探索findPaths 方法是一个递归函数,用于探索二叉树中的每个节点:

    • 如果当前节点为 null,则直接返回(基本情况)。

    • 将当前节点的值添加到 tempList 中。

  3. 叶子节点检查:如果当前节点是叶子节点(左右子节点均为 null)并且其值等于剩余的 targetSum,则表示找到了一条有效路径。将 tempList 的副本添加到 list 中。

  4. 继续搜索:如果当前节点不是叶子节点,函数会递归调用自身,分别处理左子节点和右子节点,同时调整 targetSum,减去当前节点的值。

  5. 回溯:在探索完两个子节点后,函数通过从 tempList 中移除最后添加的节点值来进行回溯。这一步是至关重要的,因为它允许函数在不保留先前路径值的情况下探索新路径。

class Solution {  
    // 主方法,用于查找所有路径,使其节点值之和等于 targetSum  
    public List<List<Integer>> pathSum(TreeNode root, int targetSum) {  
        // 存储所有有效路径的列表  
        List<List<Integer>> list = new ArrayList<>();  
        // 临时列表,用于存储当前路径  
        List<Integer> tempList = new ArrayList<>();  
        // 开始递归查找路径  
        findPaths(root, targetSum, tempList, list);  
        return list;  
    }  

    // 辅助方法,执行回溯  
    private void findPaths(TreeNode node, int targetSum, List<Integer> tempList, List<List<Integer>> list) {  
        // 基本情况:如果当前节点为 null,返回  
        if (node == null) return;  

        // 将当前节点的值添加到路径中  
        tempList.add(node.val);  

        // 检查是否为叶子节点,并且路径和等于 targetSum  
        if (node.left == null && node.right == null && node.val == targetSum) {  
            // 如果路径和匹配,将当前路径的副本添加到列表中  
            list.add(new ArrayList<>(tempList));   
        } else {  
            // 继续探索路径,更新 targetSum  
            // 从 targetSum 中减去当前节点的值,探索左子树  
            findPaths(node.left, targetSum - node.val, tempList, list);  
            // 探索右子树  
            findPaths(node.right, targetSum - node.val, tempList, list);  
        }  

        // 回溯:从路径中移除当前节点的值  
        tempList.remove(tempList.size() - 1);  
    }  
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值