数学建模学习笔记||灰色关联分析

本文介绍了灰色系统理论中的关联分析,特别是灰色关联度分析,作为一种适用于各种样本和非典型分布的统计方法。通过实例展示了如何使用Python进行数据预处理和计算关联度,以揭示系统行为特征和影响因素之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

灰色系统

信息绝对透明的是白色系统,信息绝对秘密的是黑色系统,灰色系统介于两者之间

关联分析

即系统的分析因素
包含多种因素的系统中,哪些因素是主要的,哪些因素是次要的,哪些因素影响大,哪些因素影响小,哪些需要发展,哪些需要抑制……

现有因素分析的量化方法,大都是数理统计法,如回归分析,方差分析,主要成分分析等,但都有一下弱点:

  1. 要求大量数据,数据量少难以找到统计规律
  2. 要求分布是典型的(线性的,指数的或对数的),即使是典型的,也并非都能处理
  3. 计算工作量大,一般需要计算机辅助
  4. 有时可能出现反常情况,如正相关判断为负相关
灰色关联度分析

灰色关联度分析,是一种多因素统计分析的方法。灰色关联分析弥补了采用数理统计方法做系统分析所导致的缺憾。它对样本量的多少和样本有无规律都同样适用 ,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。

灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密。曲线越接近,相应序列之间的关联度就越大&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值