动态反向学习信号干扰检测的方法学习

这个是基于学校一位老师的专利进行学习获得的相关知识,再次浅浅的记录一下自己的理解。

1.任务场景:

他是为了改善北斗接收信号的质量而存在的,本质上来说:就是获得噪声信号在不同的环境换言之状态下的最佳特征解,通过这个最佳特侦解去构建干扰信号的状态向量;进一步通过状态向量去修正接收信号,进而获得更强的鲁棒性以及抗噪声性能,其中的亮点体现在更加的“干扰信号的状态向量估计方式”——反向学习

2.优势:

(1)精确建模:状态向量能够精确描述干扰信号的动态变化情况,提供更详细和准确的信号特征信息。精确的信号建模是高精度检测的基础。

(2)动态调整:通过动态反向学习策略和状态空间模型,状态向量可以根据实际接收信号不断调整和优化,适应不同环境下的干扰情况,提高检测的灵活性和适应性。

(3)全局优化:前向和后向双方向的遍历搜索策略,使得状态向量的求解过程能够跳出局部最优,达到全局最优。全局优化的结果能够提高检测的准确性和可靠性。

(4)鲁棒性增强:动态反向学习策略能够增强模型的鲁棒性,使其在面对复杂和变化的电磁环境时,仍然能够保持高效和稳定的干扰检测性能。

3.提高检测精度和可靠性的原因

(1)状态空间模型:以干扰信号的状态向量为核心,建立状态空间模型,利用观测数据进行状态估计和更新。
(2)卡尔曼滤波:结合卡尔曼滤波技术,对状态向量进行预测和修正,提高估计精度。
(3)双向搜索:通过前向和后向的双向搜索策略,优化状态向量的求解过程,确保检测结果的全局最优。

所以,总的来说就是通过,双向搜索获得更加的北斗抗噪性能,这样的搜索方式是双向进行的,同时定义了搜索域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值