实时计算
文章平均质量分 65
木南曌
从藩而始,笃志笃行
展开
-
Flink 任务调度策略:Lazy from Sources 深入解析
Apache Flink 的任务调度策略对于优化流处理作业的性能和资源利用率至关重要。其中,“Lazy from Sources”(源自源头的惰性调度)是一种策略,它在数据实际到达并且准备执行时才启动下游任务。与Eager调度相比,Lazy策略更加保守和资源高效,尤其适用于资源受限或数据流稳定性的场景。原创 2024-05-21 16:14:24 · 518 阅读 · 0 评论 -
Flink 任务调度策略:Eager 模式详解
Apache Flink 是一个高度灵活且功能强大的流处理框架,它支持多种任务调度策略以适应不同的应用场景和资源管理需求。其中,Eager(积极)调度策略是一种旨在快速启动任务、优化数据局部性和提高整体作业执行效率的方法。下面是关于 Flink 中 Eager 调度策略的详细说明。原创 2024-05-21 15:08:43 · 572 阅读 · 0 评论 -
Flink的状态原语详述
Flink 的状态原语为开发者提供了强大的工具集,用于构建复杂且健壮的流处理应用。通过灵活运用这些状态类型,可以实现窗口聚合、事件时间处理、会话管理等多种高级流处理需求,同时保证系统的高可用性和容错性。正确理解和应用这些状态原语,是开发高质量Flink应用的关键。原创 2024-05-16 15:42:11 · 315 阅读 · 0 评论 -
Apache Flink典型应用场景全面解析
Flink的统一处理引擎设计允许用户使用同一套API处理无界流数据和有界数据集,这意味着开发人员可以编写一次代码,同时支持实时处理和批处理作业,简化了大数据处理的基础设施和开发维护成本,适用于那些既需要实时洞察又需要离线分析的业务场景。以下是Flink几个典型的使用场景,展示了其在不同行业和业务需求中的应用潜力。应用描述: 在自动驾驶汽车和智能交通系统中,Flink能够实时处理来自车辆、道路传感器、天气预报等来源的大量数据,进行路况预测、碰撞预警、路径规划等,为安全高效的自动驾驶决策提供支持。原创 2024-05-15 11:31:03 · 571 阅读 · 0 评论 -
Flink中基于Chandy-Lamport算法的分布式快照实现详解
Apache Flink利用了一种基于Chandy-Lamport分布式快照算法的变体——异步屏障快照(Asynchronous Barrier Snapshotting, ABS)来实现其强大的容错机制。Chandy-Lamport算法最初由K.M. Chandy和Leslie Lamport于1985年提出,是一种用于分布式系统中创建全局一致状态快照的算法。下面将深入介绍Flink如何采用并改进这一算法以适应流处理的需求。原创 2024-05-14 11:26:17 · 588 阅读 · 0 评论 -
Flink作业的逻辑与物理拓扑详解
逻辑拓扑和物理拓扑是Flink作业生命周期中的两个重要阶段,分别代表了从编程逻辑到可执行分布式计算任务的转换过程。逻辑拓扑关注计算逻辑本身,而物理拓扑则是在逻辑基础上,结合了执行环境的具体要求,实现了计算逻辑在分布式环境中的高效部署与执行。这一系列转换确保了Flink能够提供高性能、低延迟、高可靠性的流处理能力。原创 2024-05-14 10:23:22 · 513 阅读 · 0 评论 -
深入解析Apache Flink核心概念:事件流、状态、事件时间和快照
Apache Flink树立了流处理领域的标杆,其核心支柱——事件流、状态管理、事件时间处理,以及快照机制,共同构成了一个强大而灵活的框架,专为应对大数据的实时和历史分析挑战而设计。原创 2024-05-13 15:35:26 · 531 阅读 · 1 评论 -
Flink物理分区概念与分类详解
Apache Flink是一个分布式流处理框架,它允许在大规模数据流上进行实时计算。在Flink中,数据如何在不同的任务(Task)之间传输是一个关键因素,直接影响到系统的性能和可扩展性。是指在实际的数据流传输过程中,如何将数据分配到下游任务的不同子任务(subtasks)上的策略。这与逻辑分区(如通过keyBy操作实现的分区)不同,物理分区更多关注的是数据在分布式环境中的实际分布方式。原创 2024-05-06 17:56:54 · 508 阅读 · 1 评论 -
Apache Flink 中作业图与执行图的深入解析
从用户编写的应用程序代码到最后物理执行的过程中,Flink 通过逐层构建和优化执行图,有效地将复杂的流处理逻辑转换为可在分布式环境中高效执行的任务网络。这一系列图的转换过程确保了 Flink 能够透明地处理分布式系统的复杂性,并实现高可用、高性能的流和批处理作业。Apache Flink 是一个用于分布式流处理和批处理的开源框架,它的核心概念之一是使用一系列层次化的执行图来抽象和优化用户的流处理作业。原创 2024-04-25 17:22:19 · 468 阅读 · 2 评论 -
Flink 作业管理器:核心功能、角色与责任详解
它负责作业的接收、解析、规划、调度、状态管理、容错处理以及与用户的交互,确保流处理作业在复杂的分布式环境中高效、可靠地运行。通过高可用部署和丰富的监控手段,作业管理器为用户提供了一个稳定、可控的流处理平台,适应各种规模和复杂度的实时数据处理场景。Apache Flink 中的作业管理器(JobManager),又称为 Master,是整个 Flink 集群的核心控制组件,负责对提交的流处理作业进行全局管理和协调。原创 2024-04-24 16:25:02 · 612 阅读 · 3 评论 -
Flink Checkpoint 状态后端详解:类型、特性对比及场景化选型指南
用户还可以根据自己的需求实现自定义的状态后端,以对接第三方存储系统或满足特定的存储和访问特性。场景化选型方案:小型且短生命周期的流处理作业:优先考虑 MemoryStateBackend,因为它在内存中直接存储状态,拥有最快的访问速度。中等规模且状态不需要长期保留的作业:FsStateBackend 是一个不错的选择,既能克服内存限制,又能保证较好的性能。大型流处理作业,需要长期维护大状态数据。原创 2024-04-02 19:23:10 · 647 阅读 · 0 评论 -
Flink Checkpoint 机制深度解析:原理、注意事项与最佳实践
Checkpoint 主要通过周期性地创建应用流图状态的全局快照来实现,当系统发生故障时,可以从最近成功的 Checkpoint 快照恢复,从而实现 Exactly-Once 处理语义。:所有算子完成状态快照后,会通知 Checkpoint Coordinator,只有当所有参与 Checkpoint 的算子都成功完成了状态持久化,这个 Checkpoint 才会被标记为“已完成”。:若在处理过程中某部分失败,Flink 会从最近的已完成 Checkpoint 进行状态恢复,重新构建出一致的数据流视图。原创 2024-04-01 11:43:18 · 1112 阅读 · 0 评论 -
Flink 中 Slot 机制详解:概念、原理与开发实践
Flink 支持算子链(Operator Chaining),当链上的算子具有相同的并行度时,这些算子可以共享一个 Slot,减少数据在内存中传输的成本,提高性能。总结来说,Flink 中的 Slot 是实现作业并行执行和资源管理的关键组件,通过灵活配置 Slot 数量和合理使用 Slot Sharing Group,能够有效优化分布式环境下作业的执行效率和资源利用率。:作业中的一个算子设置了并行度之后,会生成对应的多个子任务,这些子任务将会被分配到不同或相同的 Slot 上执行,以实现并行处理数据。原创 2024-03-29 16:26:07 · 1093 阅读 · 0 评论 -
Flink 中 Task(任务)的概念、定位及应用详解与易混淆点梳理
在 Flink 中,Task 是作业(Job)拆解后的最小执行单元,它负责执行具体的计算逻辑。一般情况下每个 Task 对应着作业中特定运算步骤的一个实例,比如 map、filter、join 等操作。在发生 Operator Chain 情况下,一个 Task 可能包含多个算子的操作逻辑。任务的划分:在一个job的执行计划(数据流图)中,从source到计算到sink,每当并行度发生变化或者数据需要分组(keyBy)时(还可通过API明确设置),就会产生任务。原创 2024-03-25 17:07:30 · 971 阅读 · 0 评论 -
Apache Flink 中 Watermark 机制详解及其核心原理与应用示例
在 Apache Flink 流处理框架中,Watermark 是一个关键的时间概念,用于处理事件时间窗口(event-time processing)中的乱序事件问题。由于网络延迟等因素,事件可能会乱序到达,为了确保在某个时间窗口内完成所有相关的事件处理,Flink 引入了 Watermark 机制。水印是一个特殊的时间戳,代表了某个时间点之前的数据理论上应该都已经到达了系统,即“最多允许的延迟”。一旦水印时间戳超过了窗口结束时间,窗口就可以被认为是完整的,并触发窗口计算。原创 2024-03-20 19:13:26 · 863 阅读 · 0 评论 -
Flink 数据目录体系:深入理解 Catalog、Database 及 Table 概念
综上所述,Catalog、Database 和 Table 构成了 Flink 数据管理的基础架构,它们共同提供了对分布式数据源的抽象和统一访问接口,使得用户能够在一个统一的视角下对各类数据源进行透明化管理和高效处理。Apache Flink 在其数据处理框架中引入了 Catalog、Database、Table 等一系列概念,旨在为用户提供一种结构化的元数据管理和访问机制,从而简化大数据环境下的数据源整合和处理流程。原创 2024-03-15 17:58:24 · 1195 阅读 · 0 评论 -
Flink 流处理框架核心性能
Flink 提供了一系列丰富的窗口操作支持,包括基于时间(time-based)、计数(count-based)、会话(session-based)以及数据驱动(data-driven)的窗口定义,大大增强了对复杂流数据模式分析的能力。对于有状态计算,Flink 实现了 Exactly-once 的一致性保证,确保在出现故障或系统重启的情况下,每个记录只被精确处理一次,从而避免重复计算和数据丢失,这对于涉及资金交易、审计跟踪等要求极高准确性的应用至关重要。3 多元数据处理模式。原创 2024-03-15 17:57:11 · 590 阅读 · 0 评论 -
Flink 简述
Apache Flink 是一款开源的分布式流处理和批量数据处理框架,以其高效、容错性强、精确一次(exactly-once)的状态一致性保证而著称,在实时计算领域占据重要地位。Flink 最初专注于流式计算,但它同时支持批处理,并认为批处理不过是有限流的一个特殊形式,从而实现了真正意义上的流批一体(streaming-first)计算模型。总之,Apache Flink是一个强大而灵活的实时计算引擎,尤其适用于那些需要对实时数据流进行复杂计算、分析和响应的应用场景。原创 2024-03-15 17:13:39 · 463 阅读 · 0 评论