Flink Slot 概念
在 Apache Flink 中,Slot 是 TaskManager 中资源分配的基本单位,代表着 TaskManager 的一部分计算资源,主要包括 CPU、内存以及其他可能的资源(如磁盘空间、网络带宽等)。每个 TaskManager 可以划分为多个 Slot,每个 Slot 可以运行一个或多个 SubTask(子任务),这些 SubTask 只能是同一个Job(作业)中的子任务。
Slot 机制原理
-
资源隔离:Slot 是 Flink 资源管理的重要组成部分,通过 Slot 机制,Flink 能够实现任务级别的资源隔离。每个 Slot 独立管理其占用的资源,避免不同任务间的资源争抢。
-
并行执行:作业中的一个算子设置了并行度之后,会生成对应的多个子任务,这些子任务将会被分配到不同或相同的 Slot 上执行,以实现并行处理数据。
-
算子链与共享Slot:Flink 支持算子链(Operator Chaining),当链上的算子具有相同的并行度时,这些算子可以共享一个 Slot,减少数据在内存中传输的成本,提高性能。同时,通过设置 slotSharingGroup 可以控制哪些算子可以共享 Slot。
-
动态资源调整:在 YARN 或 Kubernetes 等资源管理系统中,Flink 能够动态申请和释放 TaskManager 上的 Slot,从而适应不断