ConcurrentHashMap 源码分析与总结

ConcurrentHashMap 源码分析与总结

1、概述

(1)为什么会提出ConcurrentHashMap

HashMap是java编程中最常用的数据结构之一,由于HashMap非线程安全,因此不适用于并发访问的场景。JDK1.5之前,通常使用HashTable作为HashMap的线程安全版本,HashTable对读写进行全局加锁,在高并发情况下会造成严重的锁竞争和等待,极大地降低了系统的吞吐量,ConcurrentHashMap应运而生。

相比于Hashtable以及Collections.synchronizedMap(),ConcurrentHashMap在线程安全的基础上提供了更好的写并发能力,并且读操作( get)通常不会阻塞,使得读写操作可并行执行,支持客户端修改ConcurrentHashMap的并发访问度,迭代期间也不会抛出 ConcurrentModificationException等等,ConcurrentHashMap有这么多优点,那么它有什么缺点吗?有,一致性问题,这是当前所有分布式系统都面临的问题。

2、ConcurrentHashMap 实现原理

2.1 ConcurrentHashMap 的分段锁机制

(1)ConcurrentHashMap的基本策略是将table细分为多个Segment保存在数组segments中;
(2)每个Segment本身又是一个可并发的哈希表,同时每个Segment都是一把ReentrantLock锁,只有在同一个Segment内才存在竞态关系,不同的Segment之间没有锁竞争Segment内部拥有一个HashEntry数组,数组中的每个元素又是一个链表。

jdk8以前:(ConcurrentHashMap结构分为两部分:segment数组,不可扩容;segment中的内部数组和链表,内部数组可扩容)
在这里插入图片描述
jdk8以后:
在这里插入图片描述

注意:
为了减少占用空间,除了第一个Segment之外,剩余的Segment采用的是延迟初始化的机制,仅在第一次需要时才会创建(通过ensureSegment实现)。为了保证延迟初始化存在的可见性,访问segments数组及table数组中的元素均通过volatile访问,主要借助于Unsafe中原子操作getObjectVolatile来实现,此外,segments中segment的写入,以及table中元素和next域的写入均使用UNSAFE.putOrderedObject来完成。这些操作提供了AtomicReferenceArrays的功能。

3、主要成员属性

     /**
     * 默认初始容量
     */
    static final int DEFAULT_INITIAL_CAPACITY = 16;

    /**
     * 默认加载因子
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * 默认并发度,该参数会影响segments数组的长度
     */
    static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /**
     * 最大容量,构造ConcurrentHashMap时指定的大小超过该值则会使用该值替换,
     * ConcurrentHashMap的大小必须是2的幂,且小于等于1<<30,以确保可使用int索引条目
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * 每个segment中table数组的最小长度,必须是2的幂,至少为2,以免延迟构造后立即调整大小
     */
    static final int MIN_SEGMENT_TABLE_CAPACITY = 2;

    /**
     * 允许的最大segment数量,用于限定构造函数参数concurrencyLevel的边界,必须是2的幂
     */
    static final int MAX_SEGMENTS = 1 << 16; // slightly conservative

    /**
     * 非锁定情况下调用size和containsValue方法的重试次数,避免由于table连续被修改导致无限重试
     */
    static final int RETRIES_BEFORE_LOCK = 2;
    /**
     * 与当前实例相关联的,用于key哈希码的随机值,以减少哈希冲突
     */
    private transient final int hashSeed = randomHashSeed(this);

    private static int randomHashSeed(ConcurrentHashMap instance) {
        if (sun.misc.VM.isBooted() && Holder.ALTERNATIVE_HASHING) {
            return sun.misc.Hashing.randomHashSeed(instance);
        }
        return 0;
    }
    /**
     * 用于索引segment的掩码值,key哈希码的高位用于选择segment
     */
    final int segmentMask;

    /**
     * 用于索引segment偏移值
     */
    final int segmentShift;

    /**
     * segments数组
     */
    final Segment<K,V>[] segments;

4、几个构造方法

(1)ConcurrentHashMap() 型构造函数

  public ConcurrentHashMap() {   
   }

说明:该构造函数用于创建一个带有默认初始容量 (16)、加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。

(2) ConcurrentHashMap(int) 型构造函数

public ConcurrentHashMap(int initialCapacity) {

        if (initialCapacity < 0) // 初始容量小于0,抛出异常
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1)); // 找到最接近该容量的2的幂次方数
        // 初始化
        this.sizeCtl = cap;
    }

说明:该构造函数用于创建一个带有指定初始容量、默认加载因子 (0.75) 和 concurrencyLevel (16) 的新的空映射。

(3)ConcurrentHashMap(Map<? extends K, ? extends V>)型构造函数

public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;
        // 将集合m的元素全部放入
        putAll(m);
    }

说明:该构造函数用于构造一个与给定映射具有相同映射关系的新映射

(4)ConcurrentHashMap(int, float)型构造

public ConcurrentHashMap(int initialCapacity, float loadFactor) {
        this(initialCapacity, loadFactor, 1);
    }

说明:该构造函数用于创建一个带有指定初始容量、加载因子和默认 concurrencyLevel (1) 的新的空映射。

(5)5. ConcurrentHashMap(int, float, int)型构造函数

public ConcurrentHashMap(int initialCapacity,
                             float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) // 合法性判断
            throw new IllegalArgumentException();
        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
            initialCapacity = concurrencyLevel;   // as estimated threads
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        this.sizeCtl = cap;
    }

说明:该构造函数用于创建一个带有指定初始容量、加载因子和并发级别的新的空映射。

5、重要方法源码(1.8)

(1)get函数

public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        // 计算key的hash值
        int h = spread(key.hashCode()); 
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) { // 表不为空并且表的长度大于0并且key所在的桶不为空
            if ((eh = e.hash) == h) { // 表中的元素的hash值与key的hash值相等
                if ((ek = e.key) == key || (ek != null && key.equals(ek))) // 键相等
                    // 返回值
                    return e.val;
            }
            else if (eh < 0) // 结点hash值小于0
                // 在桶(链表/红黑树)中查找
                return (p = e.find(h, key)) != null ? p.val : null;
            while ((e = e.next) != null) { // 对于结点hash值大于0的情况
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }

说明:get函数根据key的hash值来计算在哪个桶中,再遍历桶,查找元素,若找到则返回该结点,否则,返回null。

(2)

 final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException(); // 键或值为空,抛出异常
        // 键的hash值经过计算获得hash值
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) { // 无限循环
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0) // 表为空或者表的长度为0
                // 初始化表
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // 表不为空并且表的长度大于0,并且该桶不为空
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null))) // 比较并且交换值,如tab的第i项为空则用新生成的node替换
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED) // 该结点的hash值为MOVED
                // 进行结点的转移(在扩容的过程中)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) { // 加锁同步
                    if (tabAt(tab, i) == f) { // 找到table表下标为i的节点
                        if (fh >= 0) { // 该table表中该结点的hash值大于0
                            // binCount赋值为1
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) { // 无限循环
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) { // 结点的hash值相等并且key也相等
                                    // 保存该结点的val值
                                    oldVal = e.val;
                                    if (!onlyIfAbsent) // 进行判断
                                        // 将指定的value保存至结点,即进行了结点值的更新
                                        e.val = value;
                                    break;
                                }
                                // 保存当前结点
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) { // 当前结点的下一个结点为空,即为最后一个结点
                                    // 新生一个结点并且赋值给next域
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    // 退出循环
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) { // 结点为红黑树结点类型
                            Node<K,V> p;
                            // binCount赋值为2
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) { // 将hash、key、value放入红黑树
                                // 保存结点的val
                                oldVal = p.val;
                                if (!onlyIfAbsent) // 判断
                                    // 赋值结点value值
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) { // binCount不为0
                    if (binCount >= TREEIFY_THRESHOLD) // 如果binCount大于等于转化为红黑树的阈值
                        // 进行转化
                        treeifyBin(tab, i);
                    if (oldVal != null) // 旧值不为空
                        // 返回旧值
                        return oldVal;
                    break;
                }
            }
        }
        // 增加binCount的数量
        addCount(1L, binCount);
        return null;

说明:put函数底层调用了putVal进行数据的插入,对于putVal函数的流程大体如下。

① 判断存储的key、value是否为空,若为空,则抛出异常,否则,进入步骤②

② 计算key的hash值,随后进入无限循环,该无限循环可以确保成功插入数据,若table表为空或者长度为0,则初始化table表,否则,进入步骤③

③ 根据key的hash值取出table表中的结点元素,若取出的结点为空(该桶为空),则使用CAS将key、value、hash值生成的结点放入桶中。否则,进入步骤④

④ 若该结点的的hash值为MOVED,则对该桶中的结点进行转移,否则,进入步骤⑤

⑤ 对桶中的第一个结点(即table表中的结点)进行加锁,对该桶进行遍历,桶中的结点的hash值与key值与给定的hash值和key值相等,则根据标识选择是否进行更新操作(用给定的value值

替换该结点的value值),若遍历完桶仍没有找到hash值与key值和指定的hash值与key值相等的结点,则直接新生一个结点并赋值为之前最后一个结点的下一个结点。进入步骤⑥

⑥ 若binCount值达到红黑树转化的阈值,则将桶中的结构转化为红黑树存储,最后,增加binCount的值。

6、总结

6.1JDK1.8之前和JDK1.8之后的ConcurrentHashMap工作原理的区别

(1)JDK1.7:ConcurrentHashMap结构分为两部分:segment数组,不可扩容;segment中的内部数组和链表,内部数组可扩容
concurrencyLevel: 并行级别、并发数、Segment 数,默认值是16,也就是说 ConcurrentHashMap 有 16 个 Segments,所以理论上,这个时候,最多可以同时支持 16 个线程并发写,只要它们的操作分别分布在不同的 Segment 上。这个值可以在初始化的时候设置为其他值,但是一旦初始化以后,它是不可以扩容的。

(2)JDK1.8之后ConcurrentHashMap结构和JDK1.8之后的HashMap基本上一样,也是保持着数组+链表+红黑树的结构,不同的是,ConcurrentHashMap需要保证线程安全性。

(3)JDK1.7版本的ReentrantLock+Segment+HashEntry,而JDK1.8版本中synchronized+CAS+HashEntry+红黑树

(4)JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)

(5)JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也降低了

(6)K1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档。

6.2 DK1.8为什么使用内置锁synchronized来代替重入锁ReentrantLock

(1)因为粒度降低了,在相对而言的低粒度加锁方式,synchronized并不比ReentrantLock差,在粗粒度加锁中ReentrantLock可能通过Condition来控制各个低粒度的边界,更加的灵活,而在低粒度中,Condition的优势就没有了。
(2)JVM的开发团队从来都没有放弃synchronized,而且基于JVM的synchronized优化空间更大,使用内嵌的关键字比使用API更加自然。
(3)在大量的数据操作下,对于JVM的内存压力,基于API的ReentrantLock会开销更多的内存,虽然不是瓶颈,但是也是一个选择依据。

参考:
https://www.cnblogs.com/banjinbaijiu/p/9147434.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值