神经网络
qqq777_
这个作者很懒,什么都没留下…
展开
-
5.1-introduction-to-convnets
原文代码作者:François Cholletgithub:https://github.com/fchollet/deep-learning-with-python-notebooks中文注释制作:黄海广github:https://github.com/fengdu78代码全部测试通过。配置环境:keras 2.2.1(原文是2.0.8,运行结果一致),tensorflow 1.8,python 3.6,主机:显卡:一块1080ti;内存:32g(注:绝大部分代码不需要GPU)[外链图片原创 2020-12-24 16:32:29 · 149 阅读 · 2 评论 -
机器学习4_简单示例_分类问题类似mnist数据集
import tensorflow as tfimport pandas as pdimport matplotlib.pyplot as plt将fashion_mnist数据集分成训练集和测试集(train_image,train_label),(test_image,test_label)=tf.keras.datasets.fashion_mnist.load_data()查看训练集和测试集数据大小,查看一下第一个图片train_image.shape,train_label.sha原创 2020-12-02 21:57:36 · 276 阅读 · 0 评论 -
机器学习3_简单演示_增加隐藏层_输出为逻辑回归
import tensorflow as tfimport pandas as pdimport matplotlib.pyplot as plt读取csv文件data=pd.read_csv('F:\\218\\tensorflow_data\\credit-a.csv',header=None)显示文件头部部分数据data.head()查看最后一列的输出,统计个数data.iloc[:,-1].value_counts()输入数据赋值给x,输出数据赋值给yx=data.i原创 2020-12-02 20:06:55 · 442 阅读 · 0 评论 -
机器学习1_简单演示_受教育时间长短与工资线性回归
jupyter实现import tensorflow as tfimport pandas as pdimport matplotlib.pyplot as pltdata=pd.read_csv('F:\\218\\tensorflow_data\\Income1.csv')plt.scatter(data.Education,data.Income)x=data.Educationy=data.Incomemodel=tf.keras.Sequential()model.add(tf.原创 2020-12-01 22:34:56 · 296 阅读 · 0 评论 -
神经网络扩展、增加训练数据
获取更多的训练样本其实是很好的想法。不幸的是,这个⽅法代价很⼤,在实践中常常是很 难达到的。不过,还有⼀种⽅法能够获得类似的效果,那就是⼈为扩展训练数据。假设我们使 ⽤⼀个5的MNIST训练图像,将其进⾏旋转,⽐如说15◦:这还是会被设别为同样的数字的。但是在像素层级这和任何⼀幅在MNIST训练数据中的图 像都不相同。所以将这样的样本加⼊到训练数据中是很可能帮助我们的⽹络学会更多如何分类 数字。⽽且,显然我们不限于只增加这幅图像。我们可以在所有的MNIST训练样本上通过很多 ⼩的旋转扩展训练数据原创 2020-11-11 17:04:29 · 1121 阅读 · 0 评论 -
神经网络中drop-out(弃权)的解释
假设我们有⼀个训练数据x和对应的⽬标输出y。通常我们会通过在⽹络中前向传 播x,然后进⾏反向传播来确定对梯度的贡献。使⽤弃权技术,这个过程就改了。我们会从随 机(临时)地删除⽹络中的⼀半的隐藏神经元开始,同时让输⼊层和输出层的神经元保持不变。 在此之后,我们会得到最终如下线条所⽰的⽹络。注意那些被弃权的神经元,即那些临时被删 除的神经元,⽤虚圈表⽰在图中:我们 前向传播输⼊x,通过修改后的⽹络,然后反向传播结果,同样通过这个修改后的⽹络。在⼀个⼩批量数据⼩批量的若⼲样本上进⾏这些步骤后,我们对有关的原创 2020-11-10 20:41:22 · 2514 阅读 · 1 评论