CF 1286A 动态规划

该博客介绍了一个使用动态规划求解的编程问题,目标是找出一个序列中前n个数有n/2个偶数的最短路径。通过设置状态转移方程,博主展示了如何在O(n^2)的时间复杂度内找到解决方案。代码中用C++实现,重点在于理解动态规划的状态定义和状态转移过程。
摘要由CSDN通过智能技术生成

在这里插入图片描述

思路是 设dp[i][j][k] 前i个数有j个偶数第i个数为奇数 或者 偶数

#include<iostream>
#include<cstring>

using namespace std;

const int N = 110;
int a[N];

int dp[N][N][2];
//dp[i][j][0]前i个数有j个偶数 第 i个为偶 

int main(){
	memset(dp,0x3f,sizeof dp);
	int n;
	cin >> n;
	int c0 = 0;
	for(int i = 1; i <= n; i++){
		scanf("%d",&a[i]);
	}
	
	dp[0][0][0] = 0,dp[0][0][1] = 0;
	for(int i = 1; i <= n; i++){
		for(int j = 0; j < i; j++){
			if(a[i]){
				if(a[i] % 2 == 0){
					dp[i][j + 1][0] = min(dp[i - 1][j][0],dp[i - 1][j][1] + 1);
				}else{
					dp[i][j][1] = min(dp[i - 1][j][0] + 1,dp[i - 1][j][1]);
				}
			}else{
				dp[i][j + 1][0] = min(dp[i - 1][j][0],dp[i - 1][j][1] + 1);
				dp[i][j][1] = min(dp[i - 1][j][0] + 1,dp[i - 1][j][1]);
			}
		}
	} 
	
	cout << min(dp[n][n / 2][0],dp[n][n / 2][1]);
	
	
	
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值