洛谷P1261

题目定义B(u)为关于点u的兴趣值 给出每个点一个rank值 如果 点 u 对 v感兴趣 则不存在一个点 k使得
rank(k) > rank(v) 且 dist(u,k) < dist(u,v);

首先最简单的思想就是 n遍最短路找每个点 rank为1…10 ~ 10的最短路dist[n][11] 然后再走每个点的最短路 dis[j] 倘若
点 i 对点 j感兴趣 那么 dis[j] < dist[j][a[i] + 1] 则ans++

首先 第一步那么我们就以rank为起点 跑10遍最短路即可
第二个我们只需要剪枝
假设存在一条边 x y z
dis[y] < dis[x] + z;
dis[y] = dis[x] + z;
if(dis[y] < dist[y][a[s] + 1]) 那么是符合条件的一定更新的
那么我们继续讨论如果 dis[y] >= dist[y][a[s] + 1]
是否存在一个点 k 需要 点 y去更新 使得 dis[k]符合条件
dis[k] < dis[y] + w[i] >= dist[y][a[s] + 1] + w[i];
dist[k][a[s] + 1] >= dist[y][a[s] + 1] + dist[k][a[y] + 1]
又因为 w[i] <= dist[k][a[y] + 1]
所以不符合更新条件

#include<iostream>
#include<cstring>
#include<cstdio>
#include<utility>
#include<queue>
#include<vector>
#define x first
#define y second

using namespace std;

const int N = 3e4 + 10,M = N * 10;
typedef pair<int,int> PII;

vector<int>v[12];

int head[N],to[M],last[M],w[M],cnt;
void add(int a,int b,int c){
	to[++cnt] = b;
	w[cnt] = c;
	last[cnt] = head[a];
	head[a] = cnt;
}
int n,m,a[N];
int dist[11][N],flag[N];
void dij(int x){
	memset(flag,0,sizeof flag);
	priority_queue<PII,vector<PII>,greater<PII > > q;
	for(int i = 0; i < v[x].size(); i++){
		int j = v[x][i];
		q.push({0,j});
		dist[x][j] = 0;
	}
	while(q.size()){
		PII p = q.top();
		q.pop();
		if(flag[p.y]) continue;
		flag[p.y] = 1;
		for(int i = head[p.y]; i != -1; i = last[i]){
			int j = to[i];
			if(dist[x][j] > dist[x][p.y] + w[i]){
				dist[x][j] = dist[x][p.y] + w[i];
				q.push({dist[x][j],j});
			}
		}
	}
}

int dis[N],vis[N],ok[N],ans;
void dij_2(int x){ //此点到别的点的最短路 若dis < dist[a[x] + 1][j] 则++ 
	memset(ok,0,sizeof ok);
	memset(vis,0,sizeof vis);
	memset(dis,0x3f,sizeof dis);
	dis[x] = 0;
	priority_queue<PII,vector<PII>,greater<PII > > q;
	q.push({0,x});
	while(q.size()){
		PII p = q.top();
		q.pop();
		if(vis[p.y]) continue;
		vis[p.y] = 1;
		if(!ok[p.y]){
			++ans;
			ok[p.y] = 1;
		}
		for(int i = head[p.y]; i != -1; i = last[i]){
			int j = to[i];
			if(dis[j] > dis[p.y] + w[i]){
				dis[j] = dis[p.y] + w[i];
				if(dis[j] < dist[a[x] + 1][j]){
					q.push({dis[j],j});
				}
			}
		}
	}
}

int main(){
	cin >> n >> m;
	memset(head,-1,sizeof head);
	memset(dist,0x3f,sizeof dist);
	for(int i = 1; i <= n; i++){
		scanf("%d",&a[i]);
		v[a[i]].push_back(i);
	}
	
	for(int i = 1; i <= m; i++){
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		add(x,y,z);
		add(y,x,z);
	}
	
	for(int i = 10; i >= 1; i--){
		dij(i);
		memcpy(dist[i - 1],dist[i],sizeof dist[i]);
	}
	
	for(int i = 1; i <= n; i++){
		dij_2(i);
	}
	
	cout << ans << endl;
	
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值