牛客思维一题

28 篇文章 1 订阅
这篇博客探讨了一个关于在有限次数切换下,通过最少费用获取最大价值的问题。涉及到的规则包括数位间的切换和填充策略。作者提出了三种目标策略,并通过枚举切换次数,采用贪心算法寻找最优解。代码实现中展示了如何处理不同情况下的费用计算,以达到最小成本最大化价值的目标。
摘要由CSDN通过智能技术生成

在这里插入图片描述
首先考虑到最少费用就能拿到的一些价值
1.若最后第二位为a 那么最后一位为b 只需要花费一个b就能拿到一个价值 (因为b会受到C影响所以考虑b)
2.对于规则3来说 bbbabbba如此切换是最优的
3.对于规则1.2来说 把数放在一个地方 第一次产生价值需要a/b 第二次以后产生价值只需要 a-1/b-1
带着这三个目标去求的最优解

大家可以看到 对于规则 1 2来说 我们只需要在 规则3 的情况下 进行一个填充就行了 所以我们可以考虑 枚举 这种切换 切换了多少次 : 我们通过数据发现 我们枚举是完全一个可行的复杂度
枚举切换多少次后我们就对于上述所说的3个最少费用拿最多价值进行一个贪心的处理
假定我们切换的 方式就是 bbbabbba
那么对于 a首先有个处理 那么就是 在 bbbabbba的形式前面 只需要花费一个a就可以拿到一个价值
再其次进行一个a的填充 填充有两种方向: 一种是只在一个地方填充 一种是把我们切换已有的地方进行一个填充 这两次填充需要进行一个比较
对于b有一个处理就是如果倒数第二位是个a的话 那么最后一个只需要花费一个b就能拿到一个价值
然后再进行一个填充即可

#include<bits/stdc++.h>

using namespace std;

int main(){
	int t;
	cin >> t;
//bbbbabbbba
	while(t--){
		int n,m,a,b,c;
		cin >> n >> m >> a >> b >> c;
		int maxn = 0;
		for(int i = 0; i <= min(n,m / c); i++){
			int sum = 0;
			if(i == 0){
				sum++;
				sum += (n - 1) / a;
				sum += (m - 1) / b;
			}else{
				sum++;
				sum += (i - 1) * 2;
				if(n - i >= 1){
					sum++;
					int x = n - i - 1;
					sum += x / a;
				}
				
				if(c > b){
					sum += (c - 1) / b * i;
				}
				
				if(m - c * i >= 1){
					sum++;
				
					int x = m - i * c - 1;
					int mod = (((c - 1) / b + 1) * b) - (c - 1);
					if(x / mod >= i) sum += i,x -= mod * i;
					else{
						sum += x / mod;
						x -= x / mod * mod;
					}
					sum += x / b;
					
				}
			}
			cout << i << " " << sum << endl;
			maxn = max(maxn,sum);
		}
		cout << maxn + 1 << endl;
		
		
		
	}
	
	
	
	
	
	
	
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值