今天继续更新排序算法,这次要讲的是堆排序,堆看起来像二叉树,表现起来也像二叉树,其实不是的,堆是满足完全二叉树的一维数组。其实可以用二叉树来描述堆排序,但是大家都知道,二叉需要用额外的内存来维护左、右子树的信息,所以用数组无疑是更合适的。
堆是一种非线性结构,(本篇随笔主要分析堆的数组实现)可以把堆看作一个数组,也可以被看作一个完全二叉树,通俗来讲堆其实就是利用完全二叉树的结构来维护的一维数组。堆的这种特性非常的有用,堆常常被当做优先队列使用,因为可以快速的访问到“最重要”的元素
按照堆的特点可以把堆分为大顶堆和小顶堆大顶堆:每个结点的值都大于或等于其左右孩子结点的值
小顶堆:每个结点的值都小于或等于其左右孩子结点的值
小顶堆:从后往前推,把每个父节点和他的孩子节点进行比较,如果父节点大于孩子节点则父子节点互相交换
大顶堆:从后往前推,把每个父节点和他的孩子节点进行比较,如果父节点小于孩子节点则父子节点互相交换
package main
import "fmt"
// 堆排序的步骤分为两步:1、构建大(小)根堆 2、调整根堆
// 1、构建堆,把最值元素放到父节点,从最后一个非叶子节点开始调整,直到i=0(非叶子节点=0...(n/2-1))
// 2、把堆顶和未调整堆的最后一个元素交换,然后i--继续执行1和2步骤
// 由于和选择排序一样是交换排序,所以堆排序也是不稳定排序
func main() {
defer fmt.Println("heap sort complete")
cha1n := make(chan