一、堆排序原理
堆排序指利用堆的性质进行排序的算法。二插堆堆本身是一颗平衡二叉树,节点值需满足以下性质:
大顶堆:所有父节点的值大于大于子节点的值
小顶堆:所有父节点的值小于大于子节点的值
因此,我们可以从堆顶取出元素, 与数组最后一位交换,然后重新维护堆的性质,再取堆顶元素和最后第二位交换…不断交换,直至使数组有序。
二、代码讲解
通常我们用数组来实现堆。下图是数组对应堆的位置关系:

通过观察我们可以发现,节点为下标为i的元素,有以下性质:
父节点下标为:(i-1) / 2 ps: 为整除
左孩子节点下标为:2 * i + 1
右孩子节点下标为:2 * i + 2
1.堆化
当我们要给下标为i的节点,调整为满足堆的性质可以这样定义一个方法
/**
* arr 数组
* n 数组长度
* i 下标为i
*/
func heapify(arr []int, n int, i int) {
// 先定义最大值为下标为i的元素
largest := i
lson := 2 * i + 1 // 左孩子下标
rson := 2 * i + 2 // 右孩子下标
if lson < n && arr[largest] < arr[lson] {
largest = lson
}
if rson < n && arr[largest] < arr[rson] {
largest = rson
}
// 最大值不是i, 则交换值。交换完之后,子节点同样要满足堆性质,于是递归该下标
if largest != i {
arr[largest], arr[i] = arr[i], arr[largest]
heapify(arr, n, largest)
}
}
- 建堆
注意: 我们需要从最后一个父节点开始调整堆
长度为n的数组,最后一个元素下标为n-1, 所以它的父级下标为 (n-1-1) / 2 = n/2 - 1
func buildHeap(arr []int) {
n := len(arr)
for i:=n/2-1; i>=0; i--{
heapify(arr, n, i)
}
}
- 堆排序
func HeapSort(arr []int) {
n := len(arr)
buildHeap(arr)
for i := n-1; i>0;i--{
arr[0], arr[i] = arr[i], arr[0]
heapify(arr, i, 0)
}
}
三、完整版代码
package main
import "fmt"
func heapify(arr []int, n int, i int) {
// 先定义最大值为下标为i的元素
largest := i
lson := 2*i + 1 // 左孩子下标
rson := 2*i + 2 // 右孩子下标
if lson < n && arr[largest] < arr[lson] {
largest = lson
}
if rson < n && arr[largest] < arr[rson] {
largest = rson
}
// 最大值不是i, 则交换值。交换完之后,子节点同样要满足堆性质,于是递归该下标
if largest != i {
arr[largest], arr[i] = arr[i], arr[largest]
heapify(arr, n, largest)
}
}
func buildHeap(arr []int) {
n := len(arr)
for i := n/2 - 1; i >= 0; i-- {
heapify(arr, n, i)
}
}
func HeapSort(arr []int) {
n := len(arr)
buildHeap(arr)
for i := n - 1; i > 0; i-- {
arr[0], arr[i] = arr[i], arr[0]
heapify(arr, i, 0)
}
}
func main() {
arr := []int{10, 2, 4, 1, 9, 11, 8, 5, 13, 12, 6, 3, 7, 15, 14}
fmt.Println("排序前:", arr)
HeapSort(arr)
fmt.Println("排序后", arr)
}
运行结果:
排序前: [10 2 4 1 9 11 8 5 13 12 6 3 7 15 14]
排序后 [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]