coursera斯坦福大学机器学习笔记(1):机器学习概念及intruduction

    最近学习完了在coursera上面吴恩达教授的机器学习课程,感觉还不错而且难度适中适合初学者。现在我将总结我所学习到的所有知识以及额外的我认为有必要补充的数学概念。我将尽可能的将这些知识融合起来帮助大家更好的理解相关的概念以及算法背后的数学原理。

    第一章主要介绍机器学习的相关概念。

Tom M. Mitchell给出了机器学习的定义:一个计算机程序能够从经验E中学习(学习任务是T,学习的表现用P衡量),如果这个程序在任务T与表现衡量P 下,可以通过经验E得到改进。“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E”。也就是说,机器学习是能够从经验中不断改进。这也是所谓的学习之要义所在。

监督式学习介绍

    房价预测问题,房价预测问题是典型的监督学习问题,因为所给样本(房屋面积以及对应的价格)是明确指出的,我们需要用这些样本去训练出一个能预测房价的模型:

如果预测模型曲线如蓝线所示,则面积在250是平方英尺的房价应当为200k。此处的预测曲线是连续的,能预测连续房屋面积所对应的价格,这类问题称之为回归问题。

另一种问题比如说根据年龄和肿瘤大小来判断肿瘤是否是良性:

x代表1,即为是,o代表否。这是分类问题。分类和回归都是监督式学习。

非监督式学习:

    非监督学习主要特点是样本没有标签,相对于监督式学习的样本比如肿瘤患者的年龄和肿瘤尺寸及其是否是恶性肿瘤。房屋面积有它对应的价格。非监督式学习的样本在于它们没有标签。

推荐一篇比较好的了解机器学习概念的文章:点击打开链接

展开阅读全文

没有更多推荐了,返回首页