[Leetcode][python]Palindrome Partitioning/Palindrome Partitioning II/分割回文串/分割回文串II

Palindrome Partitioning

题目大意

将一个字符串分割成若干个子字符串,使得子字符串都是回文字符串,要求列出所有的分割方案。

解题思路

DFS

代码

class Solution(object):
    def partition(self, s):
        """
        :type s: str
        :rtype: List[List[str]]
        """
        if not s:
            return [[]]
        self.result = []
        self.dfs(s, [])
        return self.result

    def dfs(self, s, temp):
        if len(s) == 0: 
            self.result.append(temp)
        for i in range(len(s)):
            if self.isPalindrome(s[:i+1]):  # 前i个
                self.dfs(s[i+1:], temp + [s[:i+1]])

    def isPalindrome(self, cut):
        return cut == cut[::-1]

Palindrome Partitioning II

题目大意

将一个字符串分割成若干个子字符串,使得子字符串都是回文字符串,要求最少需要几次分割能够满足需求。

解题思路

动态规划

代码

效率很差,0.38%

class Solution(object):
    def minCut(self, s):
        """
        :type s: str
        :rtype: int
        """
        n = len(s)
        dp = [i-1 for i in range(n+1)]
        print dp
        for i in range(1, n+1):
            for j in range(i):
                print s[j:i]
                if s[j:i] == s[j:i][::-1]:
                    dp[i] = min(dp[i], dp[j]+1)
                    print 'youhuiwen', dp
            print '---'

        return dp[-1]

效率稍好,38%. 主要就是缓存了之前计算的回文判断

可以通过动态规划解决,dp[i]表示字符串s[:i+1]需要的最少的切割次数,dp[i]的初始值为i,因为长度为i+1的字符串最多切割i次就能满足题目要求 。
当添加一个字符后,我们需要依次判断以它为末尾的子字符串是否是回文字符串,如果是,则要计算剩余字符串需要的最少切割次数加上一次是否能使当前的最少切割次数更少.
递推表达式如下:

dp[i] = 0, 如果s[:i+1]是回文串
dp[i] = min(dp[i], dp[j-1]+1), 如果s[j:i+1]是回文串

为了减少判断回文字符串时的计算,我们通过一个二维数组isPal[j][i]来缓存判断结果,isPal[j][i]表示字符串s[j:i+1]是否是回文字符串。

class Solution(object):
    def minCut(self, s):
        """
        :type s: str
        :rtype: int
        """
        n = len(s)
        dp = [0 for __ in range(n)]
        isPal = [[False for __ in range(n)] for __ in range(n)] # 是否回文存储矩阵
        for i in range(n):
            m = i
            for j in range(i + 1):  # j在左边开始,i右边
                if s[j] == s[i] and (j + 1 > i - 1 or isPal[j + 1][i - 1]):  # 如果i和j都不相等,不需要去判断是否是回文
                    isPal[j][i] = True
                    if j == 0:  # 整个都是回文串
                        m = 0
                    else:
                        m = min(m, dp[j - 1] + 1)  # 要么每个字母都拆,要么之前的字母拆了后+1
            dp[i] = m
        # for line in isPal:
        #     print line
        # print dp
        return dp[-1]

总结

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动态规划方法可以用来解决分割回文串的问题。可以根据给定的字符串s,使用动态规划找到所有可能的回文子串。 首先,我们可以定义一个二维数组dp,其中dp[i][j]表示字符串s从索引i到j的子串是否是回文串。对于任意的i和j,如果s的第i个字符和第j个字符相等,并且s的第i+1个字符到第j-1个字符是回文串,则dp[i][j]为true。 然后,我们可以使用动态规划填充dp数组。我们可以从字符串s的末尾开始遍历,每次遍历一个字符。对于每个索引i,我们再从i开始向右遍历,直到字符串的末尾。对于每个索引i和j,我们检查字符串s从索引i到j是否是回文串。如果是回文串,则将这个子串添加到结果集中,并继续向右遍历,搜索下一个可能的回文子串。 最后,当我们遍历完整个字符串s时,我们就可以得到所有可能的分割方案。每个分割方案都是由一组回文子串组成的。 下面是一个使用动态规划的实现示例代码: ```cpp class Solution { public: vector<vector<string>> partition(string s) { vector<vector<string>> result; vector<string> path; vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false)); backtracking(s, 0, path, result, dp); return result; } void backtracking(string const& s, int startIndex, vector<string>& path, vector<vector<string>>& result, vector<vector<bool>>& dp) { if (startIndex >= s.size()) { result.push_back(path); return; } for (int i = startIndex; i < s.size(); i++) { if (s[startIndex == s[i && (i - startIndex <= 2 || dp[startIndex + 1][i - 1])) { dp[startIndex][i = true; path.push_back(s.substr(startIndex, i - startIndex + 1)); backtracking(s, i + 1, path, result, dp); path.pop_back(); } } } }; ``` 这是一个基于回溯和动态规划的算法,它可以找到字符串s所有可能的分割方案,使得每个子串都是回文串。你可以根据自己的需求使用这个算法来解决分割回文串的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [131. 分割回文串 回溯 c++](https://blog.csdn.net/qq_39993896/article/details/127132759)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [LeetCode-分割回文串(C++)](https://blog.csdn.net/weixin_42817333/article/details/125468202)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值