18、云数据湖决策框架与实施指南

云数据湖决策框架与实施指南

1. 业务创新与需求评估

在商业运营中,要找到一个平衡点,让客户在需要产品时就能得到,同时库存不会积压过多。推动业务和产品的创新是实现这一目标的关键,这就像提前预知未来,在解决未知问题的同时尽量降低风险。例如,Klodars 公司在太平洋西北地区销售雨具,市场已趋于饱和,该公司可以通过了解当地游客需求,投资雨具租赁业务,拓展到其他地区,或者增加冬季装备产品线来推动创新。

完成评估阶段需要对需求进行优先级排序。当了解客户问题后,可以从两个维度评估这些问题:
- 数据的有用性 :如何利用数据最小化或完全解决这些问题,以及该解决方案的可行性如何?
- 问题的严重性 :与组织的业务驱动因素相比,这个问题有多严重?要记住,严重性并不总是意味着坏事,它也可能为业务增加差异化价值。

可以将这些问题绘制在这两个维度上,以了解哪些问题能带来最佳投资回报。在评估阶段结束时,会得到一份为云数据湖准备的优先级需求列表。这个列表是规划数据湖的良好起点,但随着设计和实施的推进,可能会发生变化。一个好的经验法则是,目标是达到 60% - 70% 的准确性和完整性,并设定一到两年的时间范围,这样既能有一个坚实的计划,又能适应新的变化。

2. 决策框架的定义阶段

在评估阶段结束后,会得到一份优先级需求列表,用于定义和实施云数据湖。在定义阶段,需要定义和规划用于构建云数据湖的技术组件。此阶段的关键目标是完成满足评估阶段确定的客户和业务需求所需的技术设计和项目计划,该计划有助于确定项目的时间和资源需求。

确定云数据湖的正确架构时,需

内容概要:本文研究基于纳什博弈和交替方向乘子法(ADMM)的多微网主体能源共享模型,旨在实现多个微网之间的高效能源交互优化调度。通过建立非合作博弈模型,各微网作为独立决策主体在满足自身需求的前提下追求成本最小化,利用ADMM算法实现分布式求解,确保隐私保护计算效率。文中详细阐述了模型构建、博弈均衡分析、ADMM收敛性处理及仿真验证过程,并提供完整的Matlab代码实现,复现了SCI高水平论文的核心成果。; 适合人群:具备一定电力系统优化背景、博弈论基础知识及Matlab编程能力的研究生、科研人员或从事能源互联网、微电网调度相关工作的工程师;适合希望深入理解分布式优化算法在能源共享中应用的研究者。; 使用场景及目标:①掌握纳什博弈在多主体能源系统中的建模方法;②理解ADMM算法在分布式优化中的实现机制收敛特性;③复现并拓展高水平SCI论文中的能源共享优化模型;④为微电网调度、能源市场机制设计等课题提供算法支持代码参考。; 阅读建议:建议结合文档提供的Matlab代码逐段调试运行,深入理解变量设置、迭代流程收敛判断逻辑;同时可延伸至其他分布式优化场景(如虚拟电厂、综合能源系统)进行模型迁移改进。【SCI复现】基于纳什博弈和ADMM的多微网主体能源共享研究(Matlab代码实现)
内容概要:本文介绍了一种基于变分模态分解(VMD)麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷数据进行分解,降低序列复杂度并提取不同频率特征;随后采用SSA优化LSSVM的关键参数,提升预测精度;最后将优化后的LSSVM用于各模态分量的预测并叠加得到最终负荷预测结果。该方法有效提高了负荷预测的准确性稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统背景和Matlab编程能力的高校研究生、科研【VMD-SSA-LSSVM】基于变分模态分解麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)人员及从事能源预测相关工作的工程技术人员;熟悉机器学习算法并希望将其应用于实际负荷预测问题的研究者。; 使用场景及目标:①解决传统负荷预测模型精度不足、易受噪声干扰的问题;②实现对多影响因素(如温度、历史负荷等)耦合作用下的电力负荷高精度预测;③为智能电网调度、能源管理及电力市场决策提供可靠的数据支撑; 阅读建议:建议读者结合提供的Matlab代码逐步复现整个预测流程,重点关注VMD参数设置、SSA优化机制LSSVM建模环节,同时可尝试替换数据集或引入其他优化算法进行对比实验,以深入掌握该混合预测模型的设计思路调参技巧。
内容概要:本文围绕无槽永磁电机的磁场解析问题展开,指出传统的原始场公式(RFF)在不同电机几何形状下可能引入显著误差,为此提出一种更为精确的解析解法,并通过Matlab代码实现验证。该方法旨在提高无槽永磁电机磁场计算的准确性,适用于需要高精度建模的研究工程应用场景。文中还提及多个相关科研方向和技术实现,涵盖无人机仿真控制、电力系统优化、路径规划、新能源系统调度、负荷可再生能源预测等多个前沿领域,均配有Matlab或Python代码实现支持。; 适合人群:具备一定电机理论基础和编程能力,从事电气工程、自动化、【无槽永磁电机解】磁场问题的直接场解,称为原始场公式(RFF),在整个无槽永磁电机领域中可能导致显著的误差,这些误差随着机器几何形状的变化而显著不同,提出了一种达到解析解(Matlab代码实现)新能源系统、智能控制等领域研究的科研人员及研究生;熟悉Matlab/Simulink或Python的开发人员。; 使用场景及目标:①改进无槽永磁电机磁场计算精度,替代存在误差的RFF方法;②为电机设计、控制系统仿真、高性能驱动开发提供可靠模型基础;③拓展至多物理场耦合分析优化设计。; 阅读建议:建议结合提供的Matlab代码深入理解解析解的推导过程,对比RFF新方法在不同几何参数下的误差表现,强化理论实践结合;同时可参考文中列出的其他研究主题及相关代码资源,拓展科研思路技术实现路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值