19、植物叶片病害识别与图像修复技术解析

植物叶片病害识别与图像修复技术解析

1. 芦荟叶片病害识别

1.1 检测流程概述

芦荟叶片病害检测系统以图像文件作为输入,在不同阶段生成图像文件作为输出。最终,系统能够判断输入的叶片图像是否存在病害,并计算出受影响区域的百分比。其具体步骤如下:
1. 图像输入 :选取两组(类别)不同芦荟病害的叶片图像对系统进行测试,每组包含5张图像。从输入图像中创建像素的二维列表。
2. 图像像素聚类 :计算得到的第一个输出是输入图像的聚类图像。经对比发现,当聚类数为3或4时,能产生更好的效果。
3. 掩膜处理 :通常,叶片上非绿色、非白色以及非常暗的像素被认定为病害区域。在此步骤中,将绿色和白色像素掩膜为白色,使叶片的病害区域变为黑色。
4. 病害部分百分比计算 :对相关图像计算叶片病害部分的百分比。在聚类后得到的掩膜图像上进行计算,先获取掩膜图像的总像素数(Pixeltotal),再获取病害像素数(即黑色像素)(Pixelblack),最后使用公式 $Disease(\%age) = \frac{Pixelblack * 100}{Pixeltotal}$ 计算百分比。

1.2 聚类效果分析

聚类图像在病害和非病害部分的分离上取得了成功。从聚类后的图像可以观察到,具有3或4个聚类的图像更能完美地呈现叶片状况,在查找病害和确定受影响面积方面也能提供更实际的良好结果。以下是不同聚类数下的效果对比:
| 聚类数 | 效果描述 |
| ---- | ---- |

【复现】并_离网风光互补制氢合成氨系统容量-调度优化分析(Python代码实现)内容概要:本文围绕“并_离网风光互补制氢合成氨系统容量-调度优化分析”的主题,提供了基于Python代码实现的技术研究复现方法。通过构建风能、太阳能互补的可再生能源系统模型,结合电解水制氢合成氨工艺流程,对系统的容量配置运行调度进行联合优化分析。利用优化算法求解系统在不同运行模式下的最优容量配比和调度策略,兼顾经济性、能效性和稳定性,适用于并网离网两种场景。文中强调通过代码实践完成系统建模、约束设定、目标函数设计及求解过程,帮助读者掌握综合能源系统优化的核心方法。; 适合人群:具备一定Python编程基础和能源系统背景的研究生、科研人员及工程技术人员,尤其适合从事可再生能源、氢能、综合能源系统优化等相关领域的从业者;; 使用场景及目标:①用于教学科研中对风光制氢合成氨系统的建模优化训练;②支撑实际项目中对多能互补系统容量规划调度策略的设计验证;③帮助理解优化算法在能源系统中的应用逻辑实现路径;; 阅读建议:建议读者结合文中提供的Python代码进行逐模块调试运行,配合文档说明深入理解模型构建细节,重点关注目标函数设计、约束条件设置及求解器调用方式,同时可对比Matlab版本实现以拓宽工具应用视野。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值