植物叶片病害识别与图像修复技术解析
1. 芦荟叶片病害识别
1.1 检测流程概述
芦荟叶片病害检测系统以图像文件作为输入,在不同阶段生成图像文件作为输出。最终,系统能够判断输入的叶片图像是否存在病害,并计算出受影响区域的百分比。其具体步骤如下:
1. 图像输入 :选取两组(类别)不同芦荟病害的叶片图像对系统进行测试,每组包含5张图像。从输入图像中创建像素的二维列表。
2. 图像像素聚类 :计算得到的第一个输出是输入图像的聚类图像。经对比发现,当聚类数为3或4时,能产生更好的效果。
3. 掩膜处理 :通常,叶片上非绿色、非白色以及非常暗的像素被认定为病害区域。在此步骤中,将绿色和白色像素掩膜为白色,使叶片的病害区域变为黑色。
4. 病害部分百分比计算 :对相关图像计算叶片病害部分的百分比。在聚类后得到的掩膜图像上进行计算,先获取掩膜图像的总像素数(Pixeltotal),再获取病害像素数(即黑色像素)(Pixelblack),最后使用公式 $Disease(\%age) = \frac{Pixelblack * 100}{Pixeltotal}$ 计算百分比。
1.2 聚类效果分析
聚类图像在病害和非病害部分的分离上取得了成功。从聚类后的图像可以观察到,具有3或4个聚类的图像更能完美地呈现叶片状况,在查找病害和确定受影响面积方面也能提供更实际的良好结果。以下是不同聚类数下的效果对比:
| 聚类数 | 效果描述 |
| ---- | ---- |
超级会员免费看
订阅专栏 解锁全文
6913

被折叠的 条评论
为什么被折叠?



