无限论域上信任函数的解释
1. 引言
在处理不确定性、不精确、不完整甚至模糊信息时,有两种重要的理论:Dempster - Shafer证据理论(也称为信任函数理论)和粗糙集理论。
Dempster - Shafer证据理论是贝叶斯主观判断理论的推广。其基本结构是信任结构,由一组子集(焦点元素)及其对应的正权重组成,权重总和为1。从信任结构中可以导出一对信任函数和似然函数。经过四十多年的发展,证据推理已成为模式识别、图像分析、诊断、知识发现、信息融合和决策等领域的强大方法。
粗糙集理论由Pawlak提出,其基本结构是近似空间,由论域和定义在其上的二元关系组成。通过粗糙集理论中的下近似和上近似概念,可以揭示信息系统中隐藏的知识并以决策规则的形式表达出来。
这两种理论中的信任函数、似然函数与下近似、上近似之间似乎存在自然的对应关系。本文旨在在粗糙集理论的解释下,开发无限论域上信任函数和似然函数的一般框架,建立它们之间的关系,并研究其性质。
2. 无限论域上的广义粗糙集模型
设 (X) 是一个非空集合,称为论域,(P(X)) 表示 (X) 的所有子集的类。对于任意 (A\in P(X)),(\sim A) 表示 (A) 的补集。
设 (U) 和 (W) 是两个非空论域,(R\in P(U\times W)) 是从 (U) 到 (W) 的二元关系。如果对于任意 (x\in U),都存在 (y\in W) 使得 ((x,y)\in R),则称 (R) 是串行的。当 (U = W) 时,(R\in P(U\times U)) 是 (U) 上的二元关系,若对于所有 (x\in U) 有 ((x,x)\in R)