思路
求最值的算法题一般是贪心或者动规,但也有其他的情况,比如既找不到局部最优也写不出递推公式,这个时候或许可以尝试一下二分。
二分的思路很简单,即面向答案编程。它不关心具体的操作过程,而是先确定答案的范围,二分得到中间值,判断当前值是否满足要求,继续二分直到找到结果。
例子
lc5219. 每个小孩最多能分到多少糖果
https://leetcode-cn.com/problems/maximum-candies-allocated-to-k-children/.
给你一个下标从0开始的整数数组 candies 。数组中的每个元素表示大小为 candies[i] 的一堆糖果。你可以将每堆糖果分成任意数量的子堆 ,但无法再将两堆合并到一起。
另给你一个整数 k 。你需要将这些糖果分配给 k 个小孩,使每个小孩分到相同数量的糖果。每个小孩可以拿走至多一堆糖果,有些糖果可能会不被配。
返回每个小孩可以拿走的 最大糖果数目 。
这题我开始的想法是排序、找出第k个最大值作为基准,然后将最大值切一部分加到较小值上,不断增加基准值。这样很复杂,也不知道该怎么分配。所以,pass。
还是来看二分。
既然是面向答案编程,那就忽略过程,首先看答案的范围。小朋友获得的糖果最少为1个,最多为糖果之和整除k得到的结果,即恰好能平分的情况。
二分的left和right确定了,接下来就是熟悉的步骤了。对于当前值mid,我们要判断给每个小朋友分mid个糖果是否可行。怎么做呢?直接让每一堆的糖果整除mid,把结果加起来,看是否大于等于k即可。然后根据判断结果缩小答案范围。
代码如下:
class Solution:
def maximumCandies(self, candies: List[int], k: int) -> int:
l,r=0,sum