GAN是一种生成模型,包含两个部分,生成器G(Generator)和鉴别器D(Discriminator)。生成器用来产生虚假数据,鉴别器是用来判断该数据是否真实(输出是0到1之间的数字,值越大表示越接近真实数据)。生成器试图用虚假数据骗过鉴别器,而鉴别器又不断提高自己判别真假的能力。这是一个相互博弈的过程。经过多轮训练后,生成器产生的数据会越来越接近真实数据,这就是我们想要的结果了。
生成器和鉴别器都是神经网络。鉴别器用来判断输入数据是否为真,是一个二分类器,最后接sigmoid函数,输出0到1之间的值,用D(x)表示。假如标签用y表示(1表示为真,0表示为假)。则鉴别器的交叉熵损失函数为:
minD{
−ylogD(x)−(1−y)log(1−D(x))} \min_D \{ - y \log D(\mathbf x) - (1-y)\log(1-D(\mathbf x)) \} Dmin{
−ylogD(x)−(1−y)log(1−D(x))}
对于生成器来说,首先我们要随机产生一些参数z输入到生成器得到G(z)。我们的目标是是鉴别器将其识别为真实数据,即D(G(z))≈1。换句话说,当y=0时,我们要最大化交叉熵损失函数:
maxG{
−(1−y)log(1−D(G(z)))}=maxG{
−log(1−D(G(z)))}. \max_G \{ - (1-y) \log(1-D(G(\mathbf z))) \} = \max_G \{ - \log(1-D(G(\mathbf z))) \}. Gmax{
−(1−y)log(1−D(G(z)))}=Gmax{
−log(1−D(G(z)))}.
如果鉴别器表现很好的话,D(G(z))≈0,那么损失函数相应也会很小,这样就不利于用梯度下降方法优化生成器。实际中,我们会最小化下面的交叉熵损失函数来代替:
minG{
−ylog(D(G(z)))}=minG{
−log(D(G(z)))}, \min_G \{ - y \log(D(G(\mathbf z))) \} = \min_G \{ - \log(D(G(\mathbf z)))\}, Gmin{
−ylog(
生成对抗网络(GAN)及pytorch小例子
最新推荐文章于 2025-09-12 07:03:13 发布

最低0.47元/天 解锁文章
8072

被折叠的 条评论
为什么被折叠?



