生成对抗网络(GAN)及pytorch小例子

GAN是一种生成模型,包含两个部分,生成器G(Generator)和鉴别器D(Discriminator)。生成器用来产生虚假数据,鉴别器是用来判断该数据是否真实(输出是0到1之间的数字,值越大表示越接近真实数据)。生成器试图用虚假数据骗过鉴别器,而鉴别器又不断提高自己判别真假的能力。这是一个相互博弈的过程。经过多轮训练后,生成器产生的数据会越来越接近真实数据,这就是我们想要的结果了。
生成器和鉴别器都是神经网络。鉴别器用来判断输入数据是否为真,是一个二分类器,最后接sigmoid函数,输出0到1之间的值,用D(x)表示。假如标签用y表示(1表示为真,0表示为假)。则鉴别器的交叉熵损失函数为:
min ⁡ D { − y log ⁡ D ( x ) − ( 1 − y ) log ⁡ ( 1 − D ( x ) ) } \min_D \{ - y \log D(\mathbf x) - (1-y)\log(1-D(\mathbf x)) \} Dmin{ ylogD(x)(1y)log(1D(x))}
对于生成器来说,首先我们要随机产生一些参数z输入到生成器得到G(z)。我们的目标是是鉴别器将其识别为真实数据,即D(G(z))≈1。换句话说,当y=0时,我们要最大化交叉熵损失函数:
max ⁡ G { − ( 1 − y ) log ⁡ ( 1 − D ( G ( z ) ) ) } = max ⁡ G { − log ⁡ ( 1 − D ( G ( z ) ) ) } . \max_G \{ - (1-y) \log(1-D(G(\mathbf z))) \} = \max_G \{ - \log(1-D(G(\mathbf z))) \}. Gmax{ (1y)log(1D(G(z)))}=Gmax{ log(1

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值