蒙特罗卡π算法(C++语言描述)

圆的面积计算公式为:S=π*r*r

将圆放到一个直角坐标系中,如图黄色部分的面积是S/4=(π*r*r)/4;如果我们将取一个单位圆,则S/4=π/4.

因为是单位圆,半径为1,所以图中红色正方形的面积为1。

那么如果向正方形内均匀的撒点,那么落入阴影部分的点数与全部的点数之比应该是:

S阴影/S正方形=π/4.==============》π=4*S阴影/S正方形

根据概率统计的规律,只要撒的点足够多,那么将得到近似的结果。

使用蒙特卡罗算法计算圆周率有如下两个关键点:

均匀撒点:通过rand函数残生[0,1]之间随即的坐标值[x,y]

区域判断:图中黄色部分的特点是距离坐标原点的距离小于等于1,这样,可以通过计算判断x2+y2<=1来实现。


C++语言代码:

#include<iostream>
#include<ctime>
#define s_rand() double(1.0*rand()/RAND_MAX)
using namespace std;
double MontePI(int n)
{
	double PI;
	double x,y;
	int i=0,sum=0;
	srand(time(0));
	for(i=0;i<n;i++)
	{
 		x=s_rand();
		y=s_rand();
		if(x*x+y*y<1)
		{
			sum++;
		}
	}
	PI=4.0*sum/n;
	return PI;
}
int main()
{
	int n;
	double PI;
	cout<<"蒙特罗卡π算法\n"<<endl;
	cout<<"请输入撒入的点的个数:";
	cin>>n;
	PI=MontePI(n);
	cout<<"PI="<<PI<<endl;
	return 0; 
}

结果:





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值