91. 解码方法
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/decode-ways
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题目
一条包含字母 A-Z
的消息通过以下映射进行了 编码 :
'A' -> 1
'B' -> 2
...
'Z' -> 26
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,"11106"
可以映射为:
"AAJF"
,将消息分组为(1 1 10 6)
"KJF"
,将消息分组为(11 10 6)
注意,消息不能分组为 (1 11 06)
,因为 "06"
不能映射为 "F"
,这是由于 "6"
和 "06"
在映射中并不等价。
给你一个只含数字的 非空 字符串 s
,请计算并返回 解码 方法的 总数 。
题目数据保证答案肯定是一个 32 位 的整数。
示例 1:
输入:s = "12"
输出:2
解释:它可以解码为 "AB"(1 2)或者 "L"(12)。
示例 3:
输入:s = "0"
输出:0
解释:没有字符映射到以 0 开头的数字。
含有 0 的有效映射是 'J' -> "10" 和 'T'-> "20" 。
由于没有字符,因此没有有效的方法对此进行解码,因为所有数字都需要映射。
思路
这题怎么说呢,还是比较简单的,关键要看清楚样例,然后有一个动态规划的思路吧。
动态规划首先肯定是看中间。我在中间的时候能选择什么?
显然如果我自己是一个正常的数(不是0),我肯定是能翻译成一个字母的,那就加上之前记录的数据;
如果我要选两个数去翻译,就得注意范围:前一个是1就能加上,是2的话要看看这一个是不是0~6之间的数,如果是也能加上。
这样倒推回到开始的地方,显然如果我一开始选择1个或两个都应该加上1,也就是dp[0]和dp[1]是等于1的。
最后注意一下细节方面的问题,也就是如果一开始是等于0的那只能返回0,因为没有0开头的字母。
难得一遍过hhh。
感觉dp的思路对很多人来说可能都会有点难理解,因为大部分还是会线性的想,就是应该一步步的去解决问题,所以可能更擅长像贪心啊,暴力啊这种的。我现在也经常这样。而动态规划实际上是想的我已经解决了中间的问题的情况下,怎么再进一步的去解决后续的问题,或者说怎么由之前已经得到的答案来推到出我现在应该得到的答案。但是问题是怎么解决的我们暂时还不知道,我们也不知道答案从何而来,但我们清楚应该有这样一个解决的方法或已有的答案。
实话说真不用强行理解,去感受它,然后转变一下思想,感受一下计算机的思维,等到用的熟练了,动态规划就成为一种本能了,不用强行解释也能自然而然的想到动态规划解决问题的思路。我现在都还是不太能描述的清楚动态规划的思路,只是自然而然就想到应该是这种思路了。或许等到以后我算法能力强起来了我就能把这种思路通俗易懂的讲出来了吧。
代码
public int numDecodings(String s) {
int n = s.length();
if (s.charAt(0) == '0') return 0;
if (n == 1) return 1;
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
char[] chars = s.toCharArray();
for (int i = 1; i < n; i++) {
// 先加上只选一个的情况(除非是0,否则都能加上)
if (chars[i] != '0') {
dp[i + 1] += dp[i];
}
// 再加上选两个的情况(前一个是1就能加上,是2的话要看看这一个是不是0~6之间的数)
if (chars[i - 1] == '1') {
dp[i + 1] += dp[i - 1];
} else if (chars[i - 1] == '2' && chars[i] <= '6' && chars[i] >= '0') {
dp[i + 1] += dp[i - 1];
}
}
return dp[n];
}