Backtrader量化平台教程(八) TimeFrame

本文介绍了如何使用Backtrader量化交易平台进行时间框架的转换,包括从分钟级别数据到日线级别数据的上采样。通过`cerebro.resampledata()`函数,设置`timeframe`和`compression`参数实现数据转换。示例代码展示了读取分钟级数据并转换成日线数据的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AD:(本人录制的backtrader视频课程,大家多多支持哦~ https://edu.csdn.net/course/detail/9040)       

 无意中发现了一个巨牛的人工智能教程,忍不住分享一下给大家。教程不仅是零基础,通俗易懂,而且非常风趣幽默,像看小说一样!觉得太牛了,所以分享给大家。教程链接:https://www.cbedai.net/qtlyx       

 

有时候我们原有的数据和我们想要的数据不是同一个时间框架下的。譬如,我们手上只有分钟级别的数据,而我们想要的是日线级别的数据,或者说手上是日线级别的数据,希望变成周线级别的数据。在backtrader中,有很好的的方法解决这样的问题。总而言之,就是timeframe转换的问题

1.resampling

        这个方法,字面意思看起来是“采样”,准确的来说,是上采样,从小的时间点变成大的时间点。

 

方法很简单,就是在添加数据的时候,不在使用 cerebro.adddata(data),而是使用cerebro.resampledata(data, **kwargs)。
        后面的参数主要有两个,一个是timeframe,也就是你希望变成的timeframe是多少,day还是week;另外一个是compression,就是对bar进行压缩。

 

2.代码

        所有的代码是这样的:

 

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import datetime  # For datetime objects
import backtrader as bt
import backtrader.feeds as btfeeds
import backtrader.indicators as btind
import pandas as pd
import numpy as np


class MyStrategy(bt.Strategy):
    params = (
        ('ssa_window', 15),
        ('maperiod', 15),
    )

    def log(self, txt, dt=None):
        ''' Logging function fot this strategy'''
        dt = dt or se
### Backtrader 使用教程概述 Backtrader 是一个功能强大的 Python 库,用于开发和测试量化交易策略。它支持多种数据源、执行模式以及丰富的绘图工具,能够帮助用户快速构建并评估自己的投资逻辑。 以下是关于 Backtrader 的一些核心概念及其入门指南: #### 1. 安装与环境配置 为了使用 Backtrader,首先需要安装该库。可以通过 pip 命令完成安装: ```bash pip install backtrader ``` 如果希望查看详细的 API 文档,可以访问官方文档网站[^1]或者中文翻译版本的文档站点。 --- #### 2. 数据准备 Backtrader 支持 CSV 文件作为输入数据源,并允许加载来自 Pandas DataFrame 或其他格式的数据。通常情况下,CSV 文件应包含时间戳(`datetime`)、开盘价(`open`)、最高价(`high`)、最低价(`low`)、收盘价(`close`)以及成交量(`volume`)。例如: ```csv date,open,high,low,close,volume 2023-01-01,100,105,98,102,1000 ``` 通过 `bt.feeds.GenericCSVData` 类可轻松读取此类文件[^4]。 --- #### 3. 创建基础框架 在编写第一个 Backtrader 脚本时,需定义以下几个部分: - **初始化策略类**:继承自 `bt.Strategy` 并实现具体逻辑。 - **设置运行参数**:包括初始资金量、佣金比例等。 - **启动回测引擎**:将数据集传递给 Cerebro 实例并调用其方法。 下面是一个简单的例子: ```python import backtrader as bt import datetime class TestStrategy(bt.Strategy): def __init__(self): self.data_close = self.datas[0].close def next(self): if not self.position and self.data_close[0] > self.data_close[-1]: self.buy() elif self.position and self.data_close[0] < self.data_close[-1]: self.sell() if __name__ == '__main__': cerebro = bt.Cerebro() cerebro.addstrategy(TestStrategy) data = bt.feeds.GenericCSVData( dataname='data.csv', fromdate=datetime.datetime(2023, 1, 1), todate=datetime.datetime(2023, 12, 31), nullvalue=0.0, dtformat='%Y-%m-%d', timeframe=bt.TimeFrame.Days, compression=1, header=True ) cerebro.adddata(data) cerebro.broker.setcash(100000.0) # 设置初始资金为 100K USD cerebro.run() cerebro.plot(style='candlestick') ``` 上述代码展示了如何创建一个基于价格变化趋势买卖信号的基础策略。 --- #### 4. 结果分析 在完成一次完整的回测之后,可通过观察最终账户余额或绘制图表来评估表现。特别值得一提的是,`TimeReturn` 观察器可以帮助记录整个过程中每一步的资金增长情况,并将其可视化成曲线形式[^3]。 尽管实际操作中可能会遇到亏损的情况[^2],但这并不妨碍我们从中学习到宝贵的经验教训。 --- #### 总结 以上便是有关 Backtrader 初学者所需了解的一些基本知识点。随着实践深入,还可以探索更多高级特性,比如优化算法、机器学习集成等等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

钱塘小甲子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值