D-wave量子退火(quantum annealing)与机器学习

本文介绍了D-wave量子退火如何应用于解决优化问题,特别是与Ising模型的映射。讨论了实际实现中面临的精度、能量范围、稀疏连接和Qubits数量限制等问题,并提出解决方案。通过寄偶校验、地图着色问题和量子受限玻尔兹曼机(QRBM)的例子,阐述了D-wave量子退火在解决实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


l  简述

Ising model作为一个编程模型,其能量函数为我们熟知的形式

通过量子绝热过程得到问题解决方法

初始Hamiltonian

问题Hamiltonian


D-wave解决一般问题(主要是优化问题【1】)的方案是找到问题与Ising model的映射,由于物理上的制约,D-wave的量子计算机不能连接任意两个qubits,因此就算它物理上能实现量子相干也不算是通用量子计算机。D-wave非常擅长解决二次非约束二进制优化问题(Quadratic Unconstrained Binary Optimization,QUBO)。一旦我们找到这种映射,那么我们就不再需要再关心如何设计方法得到最优解,因为量子绝热过程会自动地到达基态,也就是最优解,理论上可以保证全局最优,因为有量子叠加态的帮助,不过物理上很难实现大规模粒子的相干性和纠缠的保存。D-wave并也并没有很好地实现它。

实际实现所面临的问题

1. 精度限制与控制误差

2. 能量和温度范围限制

3. 稀疏连接限制

4.

### 量子退火原理 量子退火是一种基于量子力学现象的优化算法,旨在寻找复杂系统的全局最优解。它的核心思想来源于热力学中的模拟退火过程,但在量子退火中引入了量子隧穿效应和量子叠加态来加速收敛[^1]。具体来说,在高温条件下,系统处于一种量子叠加状态,能够同时探索多个可能的解决方案;随后通过逐步降低温度,使系统逐渐演化至能量最低的状态,即达到目标问题的最佳解。 #### 实现方式 为了实现这一过程,通常会利用量子门操作或其他机制控制量子态的变化路径,使得最终状态尽可能接近理论上的理想解[^2]。这种技术特别适合处理那些传统计算机难以有效求解的大规模组合优化问题。 ### 应用场景分析 由于其独特的性质,量子退火已经在若干实际领域展现出显著优势: 1. **机器学习人工智能** 在神经网络训练方面,尤其是涉及大规模数据集的情况下,采用量子退火可以帮助克服局部极小值陷阱并提升整体性能[^4]。例如,构建更高效的推荐系统或者图像识别模型都成为可能。 2. **物流规划** 对于复杂的运输路线设计等问题而言,运用量子退火可快速得出近似最佳方案,减少时间和资源浪费的同时提高了服务品质。 3. **药物研发** 药物分子结构预测属于典型的NP难问题之一,借助量子计算平台执行高效搜索策略,则能大幅缩短新药开发周期并降低成本。 4. **金融建模** 投资组合管理需要考虑众多变量之间的相互关系以及不确定性因素影响,而这些正是量子退火擅长之处——能够在短时间内评估大量备选资产配置计划,并挑选出风险收益比最理想的选项。 ```python def quantum_annealing_example(): import dimod # Define a simple Ising model problem as an example. h = {'a': -1., 'b': 1., 'c': -.5} J = {('a', 'b'): .75, ('b', 'c'): -0.5} sampler = dimod.SimulatedAnnealingSampler() response = sampler.sample_ising(h, J) return list(response.samples())[0] print(quantum_annealing_example()) ``` 上述代码片段展示了如何使用D-Wave Ocean SDK库中的`dimod`模块创建一个简单的Ising模型实例并通过模拟退火采样器获取结果。尽管这里展示的是经典模拟退火而非真正的量子版本,但它提供了一个直观理解该类问题的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值