快速幂
快速幂顾名思义,就是快速算某个数的多少次幂。其时间复杂度为 O(log₂n), 与普通的O(n)相比效率有了极大的提高。
快速幂实现原理
假设要求x^n,如果n = 2^k,那么原题可以很轻松的表示为:x^n = ((x^2)^2)^2…。这样只要做k次平方运算就能解决,时间复杂度就从O(n)下降到log(n)。
由上面的分析可知,只要幂运算的幂可以写成2^k的形式,就可以用上面的方法降低时间复杂度。所以我们可以将任意的实数n改写有限个2^k的形式的相加。例如:
如图所示,x^22可以改写成x^16*x^4*x^2。这样我们就可以分别对x^16和x^4以及x^2使用上述方法快速计算结果,最后只要相加就可以了。举例来源:https://blog.csdn.net/weixin_41162823/article/details/80586109
快速幂代码
#include<stdio.h>
int mod_pow(int x,int n,int mod)
{
int ant = 1;
while(n > 0)
{
if(n & 1)// 按位与
ant = ant * x % mod;
x = x * x % mod;
n >>= 1; //移位运算
}
return ant;
}
int main()
{
int x,n,mod;
scanf("%d%d%d",&x,&n,&mod);
printf("%d\n",mod_pow(x,n,mod));
return 0;
}
关于按位与(&)和移位运算,不太懂的可以参考:https://blog.csdn.net/Karen_Yu_/article/details/78688349