快速幂运算

快速幂

快速幂顾名思义,就是快速算某个数的多少次幂。其时间复杂度为 O(log₂n), 与普通的O(n)相比效率有了极大的提高。

快速幂实现原理

   假设要求x^n,如果n = 2^k,那么原题可以很轻松的表示为:x^n = ((x^2)^2)^2…。这样只要做k次平方运算就能解决,时间复杂度就从O(n)下降到log(n)。

    由上面的分析可知,只要幂运算的幂可以写成2^k的形式,就可以用上面的方法降低时间复杂度。所以我们可以将任意的实数n改写有限个2^k的形式的相加。例如:

如图所示,x^22可以改写成x^16*x^4*x^2。这样我们就可以分别对x^16和x^4以及x^2使用上述方法快速计算结果,最后只要相加就可以了。举例来源:https://blog.csdn.net/weixin_41162823/article/details/80586109

快速幂代码

#include<stdio.h>
int mod_pow(int x,int n,int mod)
{
	int ant = 1;
	while(n > 0)
	{
		if(n & 1)// 按位与 
			ant = ant * x % mod;
		x = x * x % mod;
		n >>= 1;  //移位运算 
	}
	return ant;
}
int main()
{
	int x,n,mod;
	scanf("%d%d%d",&x,&n,&mod);
	printf("%d\n",mod_pow(x,n,mod));
	return 0;
} 

关于按位与(&)和移位运算,不太懂的可以参考:https://blog.csdn.net/Karen_Yu_/article/details/78688349

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值