第八届蓝桥杯省赛(第二套)等差素数列
题目描述
2,3,5,7,11,13,…是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数 列。上边的数列公差为30,长度为6。2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。这是数论领域一项惊人的成果!
有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:长度为10的等差素数列,其公差最小值是多少?
注意:只需要输出一个整数,不要填写任何多余的内容和说明文字。
题目答案
210
解题思路
1.先用筛素数的模板将100000内的素数找到,并标记
2.通过遍历在这些素数中找到长度为10等差素数列。
题目代码
#include<bits/stdc++.h>
using namespace std;
const int N=10000001;
int t=0;
int dp[N];//0表示素数,1表示约数
int p[N];//存储素数的数组
void sushu(){
memset(dp,0,sizeof(dp));
dp[0]=dp[1]=1;
for(long long i=2;i<N;i++){
if(dp[i])continue;
p[t++]=i;
for(long long j=i;j*i<N;j++){
dp[i*j]=1;
}
}
}
int main(){
sushu();
for(int i=1;i<500;i++){//公差大小
for(int j=0;j<t;j++){//数列的起点值
int f=1;
for(int k=j;k<j+10;k++){//长度为10的等差素数数列
if(dp[p[j]+(i*(k-j))] || p[j]+(i*(k-j))>=N){
f=0;
break;
}
}
if(f){
printf("%d",i);
return 0;
}
}
}
return 0;
}