第八届蓝桥杯省赛(第二套)等差素数列

第八届蓝桥杯省赛(第二套)等差素数列

题目描述

2,3,5,7,11,13,…是素数序列。

类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数 列。上边的数列公差为30,长度为6。2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。这是数论领域一项惊人的成果!

有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:长度为10的等差素数列,其公差最小值是多少?

注意:只需要输出一个整数,不要填写任何多余的内容和说明文字。

题目答案

210

解题思路

1.先用筛素数的模板将100000内的素数找到,并标记
2.通过遍历在这些素数中找到长度为10等差素数列。

题目代码

#include<bits/stdc++.h>
using namespace std;
const int N=10000001;
int t=0;
int dp[N];//0表示素数,1表示约数
int p[N];//存储素数的数组

void sushu(){
    memset(dp,0,sizeof(dp));
    dp[0]=dp[1]=1;
    for(long long i=2;i<N;i++){
        if(dp[i])continue;
        p[t++]=i;
        for(long long j=i;j*i<N;j++){
            dp[i*j]=1;
        }
        
    }
}

int main(){
    sushu();
    for(int i=1;i<500;i++){//公差大小
        for(int j=0;j<t;j++){//数列的起点值
            int f=1;
            for(int k=j;k<j+10;k++){//长度为10的等差素数数列
                if(dp[p[j]+(i*(k-j))] || p[j]+(i*(k-j))>=N){
                    f=0;
                    break;
                }
            }
            if(f){
                printf("%d",i);
                return 0;
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值