标题:等差素数列
2,3,5,7,11,13,....是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。
2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!
有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:
长度为10的等差素数列,其公差最小值是多少?
注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。
210
/*
2,3,5,7,11,13,....是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。
2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!
有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:
长度为10的等差素数列,其公差最小值是多少?
*/
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<cstdio>
using namespace std;
int prime[1000001];
int is_prime[1000001];
int t = 0;
void isprime()
{
for(int i=2;i<1000000;i++){
if(!is_prime[i]){
prime[t++] = i;
}
for(int j=0;j<t;j++){
if(i*prime[j]>1000000){
break;
}
is_prime[i*prime[j]] = 1;
if(i%prime[j]==0){
break;
}
}
}
}
int main()
{
isprime();
/*for(int i=0;i<t;i++){
cout<<prime[i]<<endl;
}*/
// cout<<is_prime[29]<<endl;
// cout<<is_prime[20]<<endl;
int flag = 0;
for(int d=2;d<=1000;d++){
for(int i=0;i<t-100;i++){
int s = 0;
int tmp = prime[i];
for(int j=0;j<9;j++){
tmp += d;
if(!is_prime[tmp]){
s++;
}
if(s==9){
//cout<<tmp<<endl;
flag = 1;
cout<<d<<endl;
break;
}
}
if(flag){
break;
}
}
if(flag){
break;
}
}
return 0;
}