人工智能本质上就是数学最优化方法吗?

本文探讨了人工智能是否仅仅是数学最优化方法的问题。从传统的人工设计算法到神经网络模型的应用,阐述了如何借助数据拟合实现计算机自动生成算法。尽管现代AI技术在一定程度上依赖数学最优化,但其核心还涉及更复杂的智能探索和函数表示。文章提到了泛函分析等数学概念,并指出人工智能的本质是数学与智能的结合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

最近,发现经常有客户对我们的产品提出质疑,你们所谓的 AI,不就是数学最优化方法吗,我们怎么没看到智能呢?

AlphaGo也好,人脸识别也好,人们发现在当今比较火的人工智能技术背后都有一个重要角色——神经网络。仔细研究神经网络,发现,神经网络原来是借助数学最优化方法生成的。于是,很多人不约而同的出一个结论,人工智能本质上就是数学最优化方法。果真如此吗?

基于人工设计算法的人工智能

以人脸识别为例,传统技术路线,要靠人工选择面部特征,编写特征提取算法。然后综合多种特征去算法,得出当前人脸照片的特征向量。例如,我们的团队就总结了包括眉毛、眼睛、鼻子等在内的17个面部特征。

但是,很快我们会发现,人工设计的算法识别准确率到 99% 就到极限了,这根本不能用来刷脸支付。

于是,科学家们开始怀疑这样一种可能性:人脸识别算法肯定是存在的,但是,该算法非常非常复杂。凭借人力一行代码、一行代码地写,写到天荒地老也写不完。是不是应该让计算机自动来生成这个算法,就像计算机依据布尔代数模型自动设计 CPU 的这样的超大规模集成电路一样。

机器能自动生成算法吗?

可是,让机器写程序,这个有点天方夜谭呀!能不能把问题简化一下?能不能统一的形式表达天底下所有的函数,通过调整公式的系数,来表达不同的函数?这个可以呀,

例如,著名的幂级数(泰勒级数),说是“几乎所有”的函数都可以表示成下面的形式:

f(x)=a_0+a_1x+a_2x^2+a_3x^3+......

还有,著名的傅里叶级数,也是说“几乎所有”的函数都可以表示成下面的形式:

f(x)=\frac12a_0+a_1cos(x)+b_1sin(x)+a_2cos(2x)+b_2sin(2x)+... ...

可惜,它们都只支持一元函数。多元函数怎么办?人们发现,人脑的神经网络原来就是一个万能的多元函数模型呀!以后我会专门介绍,如果输入、输出都是二进制数据,神经网络就等价于布尔代数生成的逻辑电路。

有了神经网络模型,接下来就好办了。因为算法的结构可以固定下来了,不需要计算机生成或修改计算过程了,需要计算机确定的仅仅是神经网络模型里面的待定系数。这个可以借助于大量的观测数据进行数据拟合就行了。

所以,你要说现代人工智能理论就是多元函数数据拟合,我还真不好意思反驳你!但是,到此为止,我们可以确定,借助神经网络模型,计算机自动生成算法是可行的。

生成函数的函数

前面通过调整神经网络模型的系数,就可以生成各种各样的具体函数。实际上,我们做了一件非常伟大的事情,以至于我们还真不好意思说,人工智能就是数据拟合,哈哈!

比如,所有的一次函数可以表示成下面的形式:

f(x)=a_0+a_1x

我们发现,此函数唯一对应与一个点 :

(a_0,a_1)

这样会发现许多很有意思的现象。比如,射影几何学的对偶命题。既然一次函数可以表示成点,平面几何定理中的点和直线互换位置,定理仍然成立。例如,“两条不重合的直线唯一确定一个交点”,对应"两个不重合的点唯一确定一条直线"。

你还会发现,数学中有一门学科叫做”泛函分析“,是专门研究这个问题的——研究函数的函数。这和我们写生成算法的算法思想方法是一样的吧?

结论

虽然不能简单地认为,这一波人工智能技术的本质就是数学最优化,但是,我觉得人工智能背后依靠的肯定是数学,这一点不会有任何人怀疑吧?

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

许野平

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值