信息检索与网络分析技术研究进展
在信息检索与网络分析领域,有多种技术和方法被用于解决不同的问题,如搜索系统的滥用检测、恐怖网络分析、关联规则挖掘以及电子邮件社交网络分析等。下面将详细介绍这些技术的原理、操作步骤和实验结果。
搜索系统滥用检测:基于聚类查询结果的方法
在搜索系统中,检测用户的滥用行为是一项重要任务。以往基于相关性反馈的技术虽然能实现较高的检测率,但误报率也相对较高。为了提高检测的精度,降低误报率,研究人员提出了基于聚类查询结果的方法。
-
检测流程 :
- 定义用户的搜索意图:通过用户的历史查询记录和搜索结果,构建用户的搜索意图模型。
- 聚类查询结果:当用户发起新的查询时,对返回的结果进行聚类。由于待聚类的项目数量较少,采用层次聚类方法以提高准确性。
- 选择聚类:根据不同的聚类选择算法,保留一组聚类。
- 确定用户的实际搜索意图:从每个选定聚类中的文档中提取基于TF-IDF的前t个术语,这些术语定义了用户的实际搜索意图。
- 检测潜在的滥用行为:将用户的实际搜索意图与之前定义的搜索意图进行比较,如果两者的相似度低于某个阈值,则认为存在潜在的滥用行为。
-
聚类选择算法 :
| 算法 | 定义 |
| ---- | ---- |
| CR1a | 保留最大的聚类 |
| CR1b | 保留与查询相似度最高的聚类 |
| CR2a | 保
超级会员免费看
订阅专栏 解锁全文
6694

被折叠的 条评论
为什么被折叠?



