智能电网电力分配与带切片的条带打包算法
一、智能电网电力分配背景与问题提出
传统的电力生产和分配方式依赖于建设能够满足峰值负荷的基础设施。然而,峰值负荷很少出现,这导致大部分昂贵的基础设施大部分时间处于闲置状态。例如,2009 年马萨诸塞州 15%的发电容量每年使用时间少于 88 小时。但减少基础设施规模并不实际,因为未满足的需求可能导致停电。因此,降低峰值负荷本身具有显著的好处。
峰值负荷通常在许多消费者同时使用高功率电器时出现。不过,某些电器的使用时间安排往往具有一定的灵活性。例如,热水器加热水所需的电量是固定的,但它既可以在一个连续的时间段内完成加热,也可以分多个短时间段进行。未来的智能电网有望在每个变电站获取当地消费者的电器使用“需求时间表”,并自动重新安排电器使用时间,以降低峰值负荷。
需求时间表可以用一组矩形来表示,每个矩形代表一个电器,其高度表示功率消耗,宽度表示期望的运行时间。重新安排应覆盖给定的时间段,这对应于一个给定宽度的条带。目标是将矩形的切片打包到条带中,以最小化最大功率消耗,即打包的最大高度。由于电器不能以双倍的正常功率运行,所以存在额外的堆叠约束,即任何垂直线都不能与同一个矩形的两个切片相交。
二、条带打包问题概述
- 二维条带打包问题(2SP)
- 一组指定尺寸的轴对齐矩形必须在不旋转的情况下打包到一个固定宽度的矩形条带中,目标是最小化条带的高度。
- 2SP 问题研究得非常充分,它是 bin 打包问题的推广(当所有矩形高度为 1 时,2SP 等价于 bin 打包问题)。
- 目前 2
超级会员免费看
订阅专栏 解锁全文
968

被折叠的 条评论
为什么被折叠?



