[布隆过滤器BloomFilter] 举例说明+证明推导

写在前面

网上有很多写布隆过滤器的博客,但是大部分都是只关注一个点,不能非常好的从原理到应用理解,所以这里对布隆过滤器进行了整理。很多思想和例子都来自网上的的一些博客,非常感谢这些可爱哒人儿的付出,这里会尽量整理的比较详细,规整,有头有尾。

一、引例

在提到实现去重功能时,大部分人都会直接选择HashSet,HashSet可以起到去重的效果,并且其时间复杂度为 O ( 1 ) O(1) O(1),但是其存在的最大问题是内存占用比较大。所以我们可以选择使用布隆过滤器。

1、引例1

我们在爬取网页信息时,如果不进行任何设置进行网页信息的爬取,则可能爬取到相同url的内容,因此我们需要去重,可以使用HashSet,但是如果url数量太多,使用HashSet需要占据大量的内存,因此我们可以使用布隆过滤器。

2、引例2

我们在使用新闻网页看新闻时,它会给我们不停的推荐新的内容,但是在每次推荐时都需要进行去重处理,去掉那些用户已经看过的内容,否则就失去了推荐的意义。那么新闻网页是如何完成去重操作的呢?

一种方法是直接进行筛选,也就是记录下用户已经访问过的新闻,每次推荐保证推荐的新闻没有被访问过,但是这种操作下,我们需要记录已经访问的新闻,而且在推荐时也要判断是否新闻已被看过,很多用户的情况下,这需要强大的内存消耗及性能要求。(若将已看过的新闻存储在内存中,则需要消耗大量的内存;若存在的数据库中,则需要频繁的数据库的exist操作;对于前端的一些缓存系统,可能判断机制是若页面在本地,则直接返回本地查询的结果,否则从后端读取,这样就造成了频繁读取缓存系统,使后端压力变大)

在这种情况下,我们可以使用布隆过滤器,判断当前新闻是否已被访问。

二、布隆过滤器功能

  • 用于解决去重问题
  • 起到去重的同时,空间上能节省90%以上
  • 会有很小的误判率(False positive),即BloomFilter判断为不存在的一定不存在,但是其判定为存在也可能不存在(请参见原理部分,更容易理解)

三、Bloom Filter思想

1、基本思想

若想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定。链表、树等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢。我们可以使用一种叫作散列表(又叫哈希表,Hash table)的数据结构。它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit Array)中的一个点。这样一来,我们只要看看这个点是不是 1 就知道可以集合中有没有它了。这就是布隆过滤器的基本思想。

2、举例说明

布隆过滤器是一个bit向量或者说是bit数组,假设我们的Bloom Filter是一个8位的bit向量,初始元素为0,假设有3个哈希函数,则其结果示意图如下:
在这里插入图片描述
①如上图所示,第①步是布隆过滤器的初始结果,在这一步中,所以bit位都初始化为0
②现在如果有一个词“Java”,其hash值为1,3,6,则将其对应的bit位置1,如图②所示
③现在有另外一个词“Python”,其hash值为2,6,7,则将其对应的bit位置1,如果③所示,注意:6位置的1被覆盖
④如果现在需要查询“C++”是否存在,若“C++”对应的hash值是1,4,7,则bit为1和7对应元素是1,但是bit4位置元素是0,所以可以判断“C++”现在不存在。
判断方法: 当需要查询的词的所有bit位所有都为1时,说明待查询词可能已经存在。但是只要有一个为0,则可以说明,待查询词一定不存在。
⑤如果现在需要查询“C++”是否存在,若“C++”对应的hash值是1,6,7,则hash位置对应的元素都是1,所以可以判断“C++”可能存在。
注意: 为什么强调可能存在,是因为,当已存在的单词较多的时候,很多hash位置都为1,这时候待查询词对应的hash位置可能都为1,但是其并不存在。比如“C++”对应的hash位置是1,6,7,且对应值全部为1,所以我们判断“C++”存在,但其实在此之前我们并没有加入“C++”这个单词到BloomFilter。

3、BloomFilter可以支持的操作
  • 支持插入操作
    从上述例子可以知道,如果想要插入一个元素到布隆过滤器,只需要将其对应hash对应元素置1
  • 支持查询操作
    上述例子中已经提到,可以支持查询操作,也就是判断其是否已经存在。当需要查询的词的所有bit位所有都为1时,说明待查询词可能已经存在。但是只要有一个为0,则可以说明,待查询词一定不存在。
  • 支持删除操作么?
    原则上BloomFilter不支持删除操作,因为其置1操作是覆盖式的,如果现在需要删除“Python”这个词,则需要将其对应的hash值位置恢复为0,即将2,6,7位置恢复为0,这种方法会使得“Java”中的6位置处的1失踪。
    当然可以采用一种方法就是计数法,比如现在BloomFilter中6位置处已经为1,再次插入时,不是覆盖1,而是进行+1操作。当进行删除操作时,不进行置0操作,而是执行减1操作。但是这种方法需要对每个bit位增加一个存储操作,会增加内存占用。

四、Bloom Filter公式推导

1、误判率推导

假设 m m m是该bit数组的大小, k k k是哈希函数的个数, n n n是插入的元素的个数。
假设hash函数以等概率条件选择并设置bit位为“1”,则其概率为 1 m \frac{1}{m} m1,因此bit数组中某一特定的位在进行元素插入时的hash操作中没有被置为1的概率是 1 − 1 m 1- \frac{1}{m} 1m1
在经过 k k k个哈希函数之后,该位仍然没有被置“1”的概率是: ( 1 − 1 m ) k (1- \frac{1}{m})^k (1m1)k.
若插入了 n n n个元素,该位仍然没有被置“1”的概率是: ( 1 − 1 m ) k n (1- \frac{1}{m})^{kn} (1m1)kn.
因为该位被置“1”的概率是: 1 − ( 1 − 1 m ) k n 1-(1- \frac{1}{m})^{kn} 1(1m1)kn.

现在检测某一元素是否在该集合中,则表明需要判断是否所有hash值对应的位都置1,但是该方法可能会错误的认为原本不在集合中的元素是在BloomFilter中的,即导致误判率的发生,其概率为:
[ 1 − ( 1 − 1 m ) k n ] k ≈ ( 1 − e − k n m ) k [1-(1- \frac{1}{m})^{kn}]^k \approx ( 1- e^{-\frac{kn}{m}})^k [1(1m1)kn]k(1emkn)k
≈ \approx 是因为使用了近似公式: lim ⁡ x − > ∞ ( 1 − 1 x ) − x = e \lim_{x->\infty }(1-\frac{1}{x})^{-x}=e limx>(1x1)x=e
从上式可以看出,当 m m m增大时,误判率减小;当 n n n增大时,误判率增大。

2、最佳哈希函数个数推导

k k k为何值时,误判率可以最小呢?
误判率函数:
f ( k ) = ( 1 − e − k n m ) k f(k) = ( 1- e^{-\frac{kn}{m}})^k f(k)=(1emkn)k
b = e n m b = e^{\frac{n}{m}} b=emn ,则简化为 f ( k ) = [ ( 1 − b − k ) ] k f(k)=[(1-b^{-k})]^k f(k)=[(1bk)]k
两边取对数得:
l n f ( k ) = k l n ( 1 − b − k ) lnf(k) = kln(1-b^{-k}) lnf(k)=kln(1bk)
两边对 k k k求导得:
1 f ( k ) ⋅ f ′ ( k ) = l n ( 1 − b − k ) + k b − k l n b 1 − b − k \frac{1}{f(k)} \cdot f'(k) = ln(1-b^{-k}) + \frac{kb^{-k}lnb}{1-b^{-k}} f(k)1f(k)=ln(1bk)+1bkkbklnb
f ( k ) f(k) f(k)取最值,则 f ′ ( k ) = 0 f'(k) = 0 f(k)=0,则:
l n ( 1 − b − k ) + k b − k l n b 1 − b − k = 0 = > ( 1 − b − k ) ⋅ l n ( 1 − b − k ) = − k b − k l n b = > ( 1 − b − k ) ⋅ l n ( 1 − b − k ) = b − k l n ( b − k ) = > 1 − b − k = b − k = > b − k = 1 2 = > e − k n m = 1 2 = > k n m = l n 2 = > k = l n 2 ⋅ m n = 0.7 ⋅ m n \begin{array}{lcl} &&ln(1-b^{-k}) + \frac{kb^{-k}lnb}{1-b^{-k}} = 0 \\ &&=>(1-b^{-k}) \cdot ln(1-b^{-k}) = -kb^{-k}lnb \\ &&=>(1-b^{-k}) \cdot ln(1-b^{-k}) = b^{-k}ln(b^{-k}) \\ &&=>1-b^{-k} = b^{-k} \\ &&=> b^{-k} = \frac{1}{2} \\ &&=> e^{\frac{-kn}{m}} = \frac{1}{2} \\ &&=>\frac{kn}{m} = ln2 \\ &&=>k=ln2 \cdot \frac{m}{n} = 0.7 \cdot \frac{m}{n} \end{array} ln(1bk)+1bkkbklnb=0=>(1bk)ln(1bk)=kbklnb=>(1bk)ln(1bk)=bkln(bk)=>1bk=bk=>bk=21=>emkn=21=>mkn=ln2=>k=ln2nm=0.7nm
也就是当 k = 0.7 ⋅ m n k=0.7 \cdot \frac{m}{n} k=0.7nm时,误判率最低, k k k为最佳哈希函数的个数。此时误判率为:
P ( e r r o r ) = f ( k ) = ( 1 − e − k n m ) k = 2 − l n 2 ⋅ m n ≈ 0.6158 ⋅ m n \begin{array}{lcl} P(error) = f(k) &=& ( 1- e^{-\frac{kn}{m}})^k \\ &=& 2^{-ln2 \cdot \frac{m}{n}} \\ &\approx& 0.6158 \cdot \frac{m}{n} \end{array} P(error)=f(k)==(1emkn)k2ln2nm0.6158nm

3、Bloom Filter内存占用

在实际应用时,用户需要决定需要插入的元素数 n n n和期望的误差率 P P P,也就是 n n n P P P这两个值是已知的,则:
(1)首先需要计算需要占用的内存大小 m m m
P = 2 − l n 2 ⋅ m n l n P = l n 2 ⋅ ( − l n 2 ) m n m = − n ⋅ l n P ( l n 2 ) 2 \begin{array}{lcl} && P = 2^{-ln2 \cdot \frac{m}{n}} \\ && lnP = ln2 \cdot (-ln2)\frac{m}{n} \\ && m = - \frac{n \cdot ln P}{ (ln2)^2 } \end{array} P=2ln2nmlnP=ln2(ln2)nmm=(ln2)2nlnP
于是,我们知道内存占用为 m = − n ⋅ l n P ( l n 2 ) 2 m = - \frac{n \cdot ln P}{ (ln2)^2 } m=(ln2)2nlnPbit,现在已知变量为 n n n, m m m P P P
(2)求得哈希函数的个数 k = l n 2 ⋅ m n = 0.7 ⋅ m n k = ln2 \cdot \frac{m}{n} = 0.7 \cdot \frac{m}{n} k=ln2nm=0.7nm

至此 n n n, m m m P P P k k k都已经知道。

(3)求内存占用
k k k最优时: P ( e r r o r ) = 2 − l n 2 ⋅ m n P(error) = 2^{-ln2 \cdot \frac{m}{n}} P(error)=2ln2nm = 2 − k =2^{-k} =2k.
P ( e r r o r ) = 2 − k = > l o g 2 P = − k = > k = l o g 2 1 P = > l n 2 ⋅ m n = l o g 2 1 P = > m n = 1 l n 2 ⋅ l o g 2 1 P = > m n = 1.44 ⋅ l o g 2 1 P \begin{array}{lcl} &&P(error) = 2^{-k} \\ && => log_2P = -k \\ &&=> k = log_2 \frac{1}{P} \\ && =>ln2 \cdot \frac{m}{n} = log_2 \frac{1}{P} \\ && => \frac{m}{n}=\frac{1}{ln2} \cdot log_2 \frac{1}{P} \\ && => \frac{m}{n} = 1.44 \cdot log_2 \frac{1}{P} \end{array} P(error)=2k=>log2P=k=>k=log2P1=>ln2nm=log2P1=>nm=ln21log2P1=>nm=1.44log2P1
因此,若我们设置 P = 1 % P=1\% P=1%,则存储每个元素需要 m n = 1.44 ⋅ l o g 2 1 0.01 = 9.57 \frac{m}{n}= 1.44 \cdot log_2 \frac{1}{0.01}=9.57 nm=1.44log20.011=9.57bits的空间(9.57是bit位置为0和置为1的总bit位数),此时 k = 0.7 ⋅ m n = 0.7 ⋅ 9.57 = 6.7 k=0.7 \cdot \frac{m}{n} =0.7 \cdot 9.57=6.7 k=0.7nm=0.79.57=6.7bits(6.7是bit位置为1的bit位数);若我们想将误判率降低为原来的 1 10 \frac{1}{10} 101,则存储每个元素需要增加 1.44 ⋅ ( l o g 2 10 a − l o g 2 a ) = 1.44 ⋅ l o g 2 10 = 4.78 1.44 \cdot (log_2 {10a}-log_2 a)=1.44 \cdot log_2 10 = 4.78 1.44(log210alog2a)=1.44log210=4.78bits的空间。

k = 0.7 ⋅ m n k=0.7 \cdot \frac{m}{n} k=0.7nm时,误判率 P P P最低,此时 P ( e r r o r ) = ( 1 − e − k n m ) k P(error) = ( 1- e^{-\frac{kn}{m}})^k P(error)=(1emkn)k, e − k n m = 1 2 e^{\frac{-kn}{m}} = \frac{1}{2} emkn=21,也就是 ( 1 − 1 m ) k n = 1 2 (1- \frac{1}{m})^{kn}=\frac{1}{2} (1m1)kn=21,此公式意义为:若插入了 n n n个元素,该位仍然没有被置“1”的概率,也就是说想保持错误率低,布隆过滤器的空间使用率需为50%。

五、Bloom Filter优缺点

1、优点
  • 布隆过滤器本质上是一种数据结构,是一种比较巧妙的概率型数据结构
  • 插入和查询非常高效,占用空间少(只需要m个bit位)
2、缺点
  • 其具有一定概率的误判性(False Positive),即Bloom Filter认为存在的东西很有可能不存在。
  • 若不进行计数操作,BloomFilter无法进行删除操作。

六、参考文章

[1] 详解布隆过滤器的原理、使用场景和注意事项
[2] 应用 5:层峦叠嶂——redis布隆过滤器
[3] 布隆过滤器(Bloom Filter)详解
[4] 【原】布隆过滤器 (Bloom Filter) 详解

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
布隆过滤器Bloom Filter)是一种重要的数据结构,它用于快速判断一个元素是否存在于一个集合中。布隆过滤器的核心思想是通过一系列哈希函数来对元素进行多次哈希,然后将得到的哈希值映射到一个位数组中,并将对应的位置设为1。当需要判断一个元素是否存在时,同样对其进行多次哈希,检查对应位数组的值是否都为1,若都为1则可以确定元素可能存在;若存在一个0,则可以确定元素一定不存在。因此,布隆过滤器是一种基于概率的数据结构,可以高效地进行查找。 然而,布隆过滤器也存在一些问题。首先,由于多个不同的元素可能会哈希到相同的位上,因此在查询时可能出现误判,即判断一个元素存在时实际上并不存在。这种误判是由于多个元素共享了某一位的原因导致的。其次,布隆过滤器的特性决定了它无法支持元素的删除操作,因为删除一个元素可能会影响其他元素的判断结果,从而增加误判率。 要注意的是,计数布隆过滤器(Counting Bloom Filter)提供了一种实现删除操作的可能性,但并不能保证在后续查询时该值一定返回不存在。因此,不能说计数布隆过滤器支持删除,而是说计数布隆过滤器提供了实现删除的可能。 [3<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【海量数据处理】布隆过滤器BloomFilter](https://blog.csdn.net/qq_43727529/article/details/127180864)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *3* [Java --- redis7之布隆过滤器BloomFilter](https://blog.csdn.net/qq_46093575/article/details/130613434)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值