今天正式开始机器学习的内容,其他的内容也将同步更新。
首先,确定学习路线图。
1.选择入门材料。首先,学习Neural networks and deep learning这本书。
2.学习deep learning,挑一个框架做实验。我推荐 pytorch/tensorflow/mxnet 里面选一个。然后一边看书,一边实验,把梳理中的东西实现一下,把框架里的教程也跑一遍,这样对于深度学习就入门了。从这里开始,接下来你的学习可以分成两个分支了,分别对应理论和工业实践。
3.1 找一个专门的问题开始钻研,不断地试验自己的想法,前人没有的想法。同时阅读这个领域最新的文章,尝试实现。比如你可以挑物体检测这个问题,既然你对于理论和实践都已经比较熟练了,你完全可以开始修改别人的网络架构,改变训练的模式,尝试把先验信息加进来。总之,有很多的玩法都可以实验。说不定玩着玩着就能写一篇文章出来发表。对应理论,以后的主打方向。
3.2 尝试实现一个自己的深度学习框架。目前深度学习离不开 c/c++ 和 cuda,所以你可以从头写一个 c/c++ 版本的,把坑自己踩一遍,这样工程能力肯定大为提高。或者,你也可以利用现有框架的后端实现一个前端,这样你对于这些框架后端的理解也能够大为提高。且你的所有的想法都可以写进这个前端里面。比如 pytorch 就是用 torch 的后端实现了一个 python 的前端,而且相比于原版的 torch 有了很多改进。
。