tf.rank函数大白话解释

本文深入解析了TensorFlow中tf.rank函数的功能与应用场景,对比了numpy中的数组维度概念,强调了tf.rank与tf.shape的区别,帮助读者理解tf.rank在处理多维数组时的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       这年头想tensorflow,主要是搞明白结构和框架里常用的函数。tf.rank这个函数不常用,也不好理解,所以各位不用深究。只要看到这个函数不慌就行。

tf.rank在我理解看来是数组的维度。numpy里弄个[[[1,2,3]]],这是三维数组,rank=3。[[1,2,3;4,5,6;7,8,9]],这是二维数组,rank=2。[[[1,2,3;4,5,6;7,8,9]]],这是三维数组,rank=3。注意和tf.shape的区分,shape指的是矩阵维度,不用数中括号。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值