ZOJ2314Reactor Cooling(无源汇上下界可行流)

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314

建图:

首先,建立一个超级源点s和超级汇点t。

然后,把所有原图中的边都加入到建立的新图中,容量为上限间下限。

再后,计算出一个d[i],表示编号为 i 的点所有流入的下限流量的和 减去 该点所有留出的下限流量和;如果d[i] > 0,那么就连一条从 s 到 i 容量为 d[i] 的边;如果d[i] < 0,那么就从 i 到 t 连一条容量为 -d[i] 的边;如果 d[i] == 0,就不用连边。

最后,计算 s 到 t 最大流。

注意,输出的时候只输出原图中的边,流量为计算出的流量加上流量下限。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define maxn 300
#define maxm 20000
#define INF (1<<31)-1
using namespace std;

int l[maxn] = {0};

struct Edge
{
    int from, to, cap, flow;
    int weight;
    Edge(int u, int v, int c, int f, int w):
        from(u), to(v), cap(c), flow(f), weight(w) {}
};

struct Dinic
{
    int n, m, s, t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool vis[maxn];
    int d[maxn];
    int p[maxn];
    int a[maxn];
    int num_Edge[maxm];

    void init(int n, int m)
    {
        this->n = n;
        this->m = m;
        this->s = 0;
        this->t = n+1;

        for (int i=0; i<n; i++)
        {
            G[i].clear();
        }
        edges.clear();
    }

    void addEdge(int from, int to, int cap, int w = 1)
    {
        edges.push_back(Edge(from, to, cap, 0, w));
        edges.push_back(Edge(to, from, 0, 0, w));
        m = edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);

        num_Edge[n] = m-2;
    }

    int spfa()
    {
        memset(vis,0,sizeof(vis)); vis[s] = true;
        for (int i=0; i<=t; i++)  d[i] = INF; d[s] = 0;
        p[s] = 0; a[s] = INF;
        /*for (int i=0; i<=n; i++)
            cout<<d[i]<<' ';*/

        queue<int> Q;
        Q.push(s);
        d[s] = 0;
        vis[s] = true;
        while (!Q.empty())
        {
            int x = Q.front();
            Q.pop();
            vis[x] = false;
            for (int i=0; i<G[x].size(); i++)
            {
                Edge& e = edges[G[x][i]];
                if (e.cap>e.flow && d[e.to] > d[x]+e.weight)
                {
                    d[e.to] = d[x]+e.weight;
                    p[e.to] = G[x][i];
                    a[e.to] = min(a[x], e.cap-e.flow);
                    if (!vis[e.to])
                    {
                        Q.push(e.to);
                        vis[e.to] = true;
                    }
                }
            }
        }
        if (d[t] == INF)
            return 0;

        int u = t;
        while (u != s)
        {
            Edge e = edges[p[u]];
            edges[p[u]].flow += a[t];
            edges[p[u]^1].flow -= a[t];
            u = edges[p[u]].from;
        }
        return a[t];
    }

    int maxFlow()
    {
        int flow = 0;
        while (true)
        {
            int f = spfa();
            if (!f)
                break;
            flow += f;
        }
        return flow;
    }

    void print(int m)
    {
        bool flag = true;
        for (int i=0; i<G[s].size(); i++)
        {
            Edge e = edges[G[s][i]];
            if (e.flow < e.cap)
            {
                flag = false;
                break;
            }
        }

        if (flag)
        {
            cout<<"YES"<<endl;
            for (int i=1; i<=m; i++)
                cout<<edges[(i-1)*2].flow + l[i]<<endl;
        }
        else
            cout<<"NO"<<endl;
    }
};

int main()
{
    int t;

    cin>>t;
    while (t > 0)
    {
        t--;
        int n, m;
        Dinic a;

        scanf("%d%d",&n,&m);
        a.init(n,m);
        int d[maxn] = {0};
        for (int i=1; i<=m; i++)
        {
            int u, v, c;
            scanf("%d%d%d%d",&u,&v,&l[i],&c);
            a.addEdge(u,v,c-l[i]);
            d[u] -= l[i];
            d[v] += l[i];
        }
        for (int i=1; i<=n; i++)
        {
            if (d[i] > 0)
                a.addEdge(0,i,d[i]);
            else if (d[i] < 0)
                a.addEdge(i,n+1,-d[i]);
        }

        int ans = a.maxFlow();
        a.print(m);

        if (t > 0)
            cout<<endl;
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值