- 学习率:表示了每次更新参数的幅度大小。学习率过大,会导致待优化的参数在最小值附近波动,不收敛;学习率过小,会导致待优化的参数收敛缓慢。
在训练过程中,参数的更新相纸损失函数梯度下降的方向。参数的更新公式为:
假设损失函数为 loss = (w + 1)2。梯度是损失函数 loss 的导数为 ∇=2w+2。如参数初值为 5,学习率为 0.2,则参数和损失函数更新如下:
1 次 参数 w: 5 5 - 0.2 * (2 * 5 + 2) = 2.6
2 次 参数 w: 2.6 2.6 - 0.2 * (2 * 2.6 + 2) = 1.16
3 次 参数 w: 1.16 1.16 – 0.2 * (2 * 1.16 + 2) = 0.296
4 次 参数 w: 0.296
损失函数 loss = (w + 1)2 的图像为:
由图可知,损失函数loss的最小值会在(-1,0)处得到,此时损失函数的倒数为0,得到
TensorFlow笔记之神经网络优化——学习率
最新推荐文章于 2024-09-18 11:22:21 发布
本文探讨了在TensorFlow中神经网络优化时学习率的重要性。通过实例展示了学习率过大或过小时对参数收敛的影响,并提供了学习率动态调整的指数衰减方法,包括其计算公式和在TensorFlow中的实现方式。实验结果显示,随着训练轮数增加,采用指数衰减学习率能使学习率逐渐减小。
摘要由CSDN通过智能技术生成