线性回归解决了什么?
线性回归算法可以帮助解决回归问题,对处理回归问题有着天然的优势,线性回归算法虽然简单,但是对于处理回归问题还是有着比较好的作用
线性回归算法思想简单,实现容易,结果具有较好的解释性,也就是我们可以通过线性回归训练的参数用来解释我们的特征数据
简单线性回归:
公式:y = ax + b
为了表达我们的预测值y^(i)与真实值y(i)的差距,我们采取损失函数的做法
损失函数:Σ(y(i) - y^(i))²
其中我们的预测值 y^(i) = ax(i) + b
目标:找到最优参数 a 和 b 使得我们损失函数不断优化 进而优化算法 这种做法一般称为最优化原理
我们的目标在这个问题中属于典型最小二乘法问题
这里不再赘述推导过程
衡量指标:均方误差 均方根误差 平均绝对误差
评判回归问题的指标:RSquare
其中 我们的 R²越大越好,如果R²等于0,代表我们的模型等同于基准模型,若R²小于0,代表我们的模型连基准模型都不如,即我们应思考问题是否满足线性关系
R² = 1 - MSE(y^,y) / var(y)
多元线性回归:
我们从一维扩展至了多维
y = θ0 + θ1x1 + θ2x2 + θ3x3 + ...... + θnxn
θ = (θ0,θ1,θ2,θ3,......,θn)T
y^(i) = θ0x0(i) + θ1x1(i) + θ2x2(i) + ...... + θnxn(i)
x0(i) = 1
y^ = xb·θ
多元线性回归正规方程解:
θ = (xbTxb)-¹·xbT·y