独家|活捉凌晨两三点作案的AI机器人,腾讯你要不要捉回去修炼?


作者|震霆  
出品|遇见人工智能  公众号 GOwithAI

一开始没觉得什么,但是越看越有意思,甚至是吓人!


去年8月,仅用25 秒写出地震报道的智能写稿机器人让很多人印象深刻。时隔4个月,笔者不经意间又发现了AI在媒体中的另外一种应用可能,它潜伏在一个媒体后台,出没在凌晨两三点,起初没有察觉,但是仔细观察后却细思极恐。


作为专注人工智能的全媒体,对此发现颇为新奇,独家首次爆料,以下Enjoy:




“遇见人工智能”在创办之初就入驻了多家自媒体平台,也形成了强势内容分发的能力,当然腾讯内容开放平台(原企鹅自媒体)是重点维护的发声阵地之一。



本账号原创的内容几乎都会第一时间在腾讯内容开放平台同步。


进入12月发现此平台的评论量逐渐多了起来,几乎每篇文章都能有两三条评论。一开始还为此颇为得意,关注度逐渐提升,但是仔细看了评论的内容和评论时间,彼此越来越感到疑惑,这些评论的人到底是何方神圣?


一系列的观察之后,我们有理由相信这是腾讯AI技术在内容平台的一个应用,不过用途大家可能都懂得:用机器人来产生评论,营造一种平台活跃的假象和氛围。但是在遇见人工智能的视线中,这个机器人还是有些too young。

一:貌似认真的评论

 

先来看下评论说了什么。见下图:


《晚上好啊!这是今天人工智能精选要闻》是遇见人工智能推出的AI晚报,集合了当天精挑细选的人工智能要闻。但是笔者观察到12月28日所发内容产生了3条评论:


1:你用今天的人工智能,去理解末来的人工智能,你还忽视了它成长的速度。你还当什么顾问呢?


2:我觉得有个电影的关观点挺对的,你大量生产智能化机器人,当达到一定数量现在,在控制机器人,是不是可以称霸世界了


3:只是按照程序和程序设定的逻辑工作,这和马云对他取得了经济意义上的成功后忘乎所以了一样,人工智能不具有伦理、哲学能力,甚至不知道什么时候不能做他能做的事情,“人工智能”被夸大了,也可能成为人类的祸害。我最为得意的一个举例:就怕程序设计者已经死了,但是有问题或者出了问题的程序还在“工作”(运行),比如正在控制核系统非正常运行,你说有多恐怖?


每一条看上去很是很用心的评论,感动的小编都快哭了(当下的快餐要闻,谁会有时间给你去这么良心的评论),但是如果你看了当期的文章内容之后,会发现3条内容均与文章没有太大关系。三条评论虽然包含了人工智能,机器人等关键词,但仔细读来,云里雾里,不知所云。


单看第三条,以为是很高质量的点评,但是依旧和文章内容没有关系,并且本身就讲不通顺。


如果3条评论太少,再看看另外一则文章的评论,如下:



1:以前的A多是靠联网现在有了人工智能不用联网了

2:作为一名开发者,深深地觉得算法,人工智能是个大趋势啊

3:我对AI感兴趣,特别是手机A开发AI。


这三条评论是对一篇正常文章的评论,我们可以看到很明显的把AI写成了A,并且与内容同样的没有丝毫关联。

二:匪夷所思的评论时间

 

第二个引起笔者奇怪的是评论时间,见下图(点击见大图)


图中所示的三篇文章,产生了7条评论,评论时间可谓慎人。 凌晨3点16分57秒一条,接着3点16分56秒两条,凌晨2点33分24秒接连三条。


这个时间点按常理大家都在睡觉,而碰巧在半夜三个人在同一秒钟对同一篇文章发表评论几乎不可能。


而答案只有一个:AI机器人在做案。

三:神秘的重复评论


以上两条我们已经有理由对评论者的身份产生怀疑,再加上这一条,会更有说服力。


我们从截图中可以看到,以上三条评论一模一样,但是发布账号不同,评论的文章也不同,发布时间同样是诡异的凌晨两三点。


看似很长很用心的长评论,显然也只是根据文章关键词进行匹配,然后进行评论。

四:来自火星的ID名称



从评论的账号来看,我们还发现了很多有意思的ID名称:╰悠、我的青春▍一场梦、时光泯灭了少年心。̶、ご等/你归涞ゝ、_ So丶n1ce☆_一缕阳光、渲染整个世界、~默。素颜


这一堆火星文的ID名称,起的莫名其妙,毫无章法。


通过以上四方面,我们有理由相信,这是一个已经被训练,并试图仿照人类话语在媒体后台偷偷评论的AI机器人,主人正是家大业大的腾讯。


基于对人工智能的敏感度,遇见人工智能第一时间捕捉到了这个信息,也正如标题所说活捉这个凌晨两三点作案的AI机器人。 


我们也借此看到了一个正试图通过人工智能在内容生态上进行试水的鲜活案例,在评论的水平上如果不仔细研究,几乎不会发现什么漏洞。但是既然被捉到了,也说明机器还是机器,在模仿人类的操作行为上还不足够智能不够AI。 


那么,腾讯你要不要把这个机器人捉回去重新修炼?


>>>>昨日全平台阅读量:7万2000余次>>>>
约访|据说有气质的AI公司都想被AI公司酷约访一下。微信加:623974966 
福利|点标题下蓝字,或微信搜“遇见人工智能”,关注后回复"报告",1秒钟获取麦肯锡、德 勤等48份顶级最新AI报告。


遇见人工智能 

专注人工智能的首席全媒体 

商务合作、转载、投稿请联系微信 

▼ 

623974966



我们近日组建了遇见人工智能观察团社群,每天分享最新的人工智能要闻、新技术、新应用、新观点。


目前微软、百度、腾讯、出门问问、Face++ 、商汤科技、科大讯飞、猎豹移动、物灵等顶级人工智能公司集结,如果感兴趣,可加微信:623974966,备注:遇见人工智能+单位和职位,符合条件,邀您加入。







深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值