有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
code:
//二维做法
#include<bits/stdc++.h>
using namespace std;
const int N=1005;
int f[N][N],v[N],w[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++)
for(int j=0;j<=m;j++)
{
f[i][j]=f[i-1][j];
if(j>=v[i])
f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
cout<<f[n][m];
return 0;
}
//一维做法
#include<bits/stdc++.h>
using namespace std;
const int N=1005;
int f[N],v[N],w[N];
int main()
{
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++)
for(int j=m;j>=v[i];j--)
{
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
cout<<f[m];
return 0;
}
先讲二维做法,f[i][j]指前i件物品总体积为j的情况下的最大价值,我们的想法是算出前N件物品体积为0,1,2,~,v的最大价值,然后从这几个体积的情况中取最大值。在实际算的过程中,我们可以选择将当前物品装入背包,也可以不装入,不装入的情况就是f[i][j]=f[i-1][j],装入的情况就是f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i]),但是这里要注意的是j>=v[i],原因应该都懂,数组里的下标不可能为负数。看了上面代码的人可能就有疑问了,为什么直接输出f[n][m]呢?这就是上述做法的巧妙之处了,f[n][m]输出的就是前n件物品体积小于或等于m的最大价值!现在细说原因:我们在写代码的过程中,将f[N][N]定义在全局变量中,这时系统会自动帮我们将f[N][N]里面的值定义为0,(如果是局部变量,我们就必须自己定义了,否则算出的答案就一定会出错,因为系统不会自动定义为0).而如果只将f[i][0]定义为0,其他值定义为负无穷大-INF(也不一定要负无穷大,只要该值的绝对值比累计加的值大即可,比如这里可将其定义为-10^7,因为10的7次方要大于1000*1000,即N的最大值乘W的最大值),我们算出的f[i][j]就是前i件物品总体积刚好为j的情况下的最大价值!具体原因大家可以自行模拟下样例体会体会,这里就不多说了(也很难说清楚。。。)。
至于一维做法,就是稍微变了变,将维数降下来了,优化了空间。我们发现f[i][j]=f[i-1][j]这步其实可以去掉,变成这种形式:
for(int i=1;i<=n;i++)
for(int j=m;j>=v[i];j--)
{
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
细心的人就会发现这里的第二重循环跟前面的二维做法不一样,前面是从小到大,这里是从大到小。其实前面既可以从小到大,也可以从大到小,而这里只能从大到小!因为如果从小到大的话就是在跟f[i][j]比较了,而我们是要跟f[i-1][j]比较。最后也跟二维做法一样,直接输出f[m]即可,原因上面说了。