深度学习
文章平均质量分 68
日出2133
代码是写给人看的,而不是写给机器运行的。
展开
-
标签平滑(label smoothing) torch和tensorflow的实现
在常见的多分类问题中,先经过softmax处理后进行交叉熵计算,原理很简单可以将计算loss理解为,为了使得网络对测试集预测的概率分布和其真实分布接近,常用的做法是使用one-hot对真实标签进行编码,然后用预测概率去拟合one-hot的真实概率。但是这样会带来两个问题:无法保证模型的泛化能力,使网络过于自信会导致过拟合;全概率和0概率鼓励所属类别和其他类别之间的差距尽可能加大,而由梯度有界可知,这种情况很难adapt。会造成模型过于相信预测的类别。标签平滑可以缓解这个问题,可以有两个角度理解这件事原创 2022-05-17 16:14:27 · 1652 阅读 · 0 评论 -
torch系列之手写数字识别(实战)
识别准确率99%有问题留言。直接上代码:文件夹名称:MNIST_CNN_train文件:model_CNN.py文件:train.py文件:test.py原创 2021-12-02 18:38:56 · 1713 阅读 · 0 评论 -
动态图解RNN、LSTM、GRU
作者 Michael Nguyen王小新 编译自 Towards Data Science量子位 出品 | 公众号 QbitAIAI识别你的语音、回答你的问题、帮你翻译外语,都离不开一种特殊的循环神经网络(RNN):长短期记忆网络(Long short-term memory,LSTM)。最近,国外有一份关于LSTM及其变种GRU(Gated Recurrent Unit)的图解教程非常火。教程先介绍了这两种网络的基础知识,然后解释了让LSTM和GRU具有良好性能的内在机制。当然,通..转载 2021-02-24 08:00:12 · 379 阅读 · 0 评论