标签平滑(label smoothing) torch和tensorflow的实现

在常见的多分类问题中,先经过softmax处理后进行交叉熵计算,原理很简单可以将计算loss理解为,为了使得网络对测试集预测的概率分布和其真实分布接近,常用的做法是使用one-hot对真实标签进行编码,然后用预测概率去拟合one-hot的真实概率。但是这样会带来两个问题:

无法保证模型的泛化能力,使网络过于自信会导致过拟合;
全概率和0概率鼓励所属类别和其他类别之间的差距尽可能加大,而由梯度有界可知,这种情况很难adapt。会造成模型过于相信预测的类别。
标签平滑可以缓解这个问题,可以有两个角度理解这件事。

角度一
软化这种one-hot编码方式。

在这里插入图片描述 

等号左侧:是一种新的预测的分布

等号右侧:前半部分是对原分布乘一个权重, ϵ \epsilonϵ 是一个超参,需要自己设定,取值在0到1范围内。后半部分u是一个均匀分布,k表示模型的类别数。

在这里插入图片描述 

由以上公式可以看出,这种方式使label有 ϵ \epsilonϵ 概率来自于均匀分布, 1 − ϵ 1-\epsilon1−ϵ 概率来自于原分布。这就相当于在原label上增加噪声,让模型的预测值不要过度集中于概率较高的类别,把一些概率放在概率较低的类别。

因此,交叉熵可以替换为:

可以理解为:loss为对“预测的分布与真实分布”及“预测分布与先验分布(均匀分布)”的惩罚。

代码实现如下:
 

class LabelSmoothingCrossEntropy(nn.Module):
    def __init__(self, eps=0.1, reduction='mean', ignore_index=-100):
        super(LabelSmoothingCrossEntropy, self).__init__()
        self.eps = eps
        self.reduction = reduction
        self.ignore_index = ignore_index

    def forward(self, output, target):
        c = output.size()[-1]
        log_pred = torch.log_softmax(output, dim=-1)
        if self.reduction == 'sum':
            loss = -log_pred.sum()
        else:
            loss = -log_pred.sum(dim=-1)
            if self.reduction == 'mean':
                loss = loss.mean()


        return loss * self.eps / c + (1 - self.eps) * torch.nn.functional.nll_loss(log_pred, target,                                                                                 reduction=self.reduction,                                                                                   ignore_index=self.ignore_index)

角度二

对于以Dirac函数分布的真实标签,我们将它变成分为两部分获得(替换):

  • 第一部分:将原本Dirac分布的标签变量替换为(1 - ϵ)的Dirac函数;
  • 第二部分:以概率 ϵ ,在u(k)u(k) 中份分布的随机变量。
    def label_smoothing(inputs, epsilon=0.1):
    	K = inputs.get_shape().as_list()[-1]    # number of channels
    	return ((1-epsilon) * inputs) + (epsilon / K)

    代码的第一行是取Y的channel数也就是类别数,第二行就是对应公式了。
    下面用一个例子理解一下:

    假设我做一个蛋白质二级结构分类,是三分类,那么K=3;假如一个真实标签是[0, 0, 1],取epsilon = 0.1,
    新标签就变成了 (1 - 0.1)× [0, 0, 1] + (0.1 / 3) = [0, 0, 0.9] + [0.0333, 0.0333, 0.0333]= [0.0333, 0.0333, 0.9333]
    实际上分了一点概率给其他两类(均匀分),让标签没有那么绝对化,留给学习一点泛化的空间。
    从而能够提升整体的效果。

torch版本

首先,让我们使用一个辅助函数来计算两个值之间的线性组合:

def linear_combination(x, y, epsilon): 
    return epsilon*x + (1-epsilon)*y

接下来,我们使用 PyTorch nn.Module实现一个新的损失函数

import torch.nn.functional as F


def reduce_loss(loss, reduction='mean'):
    return loss.mean() if reduction=='mean' else loss.sum() if reduction=='sum' else loss


class LabelSmoothingCrossEntropy(nn.Module):
    def __init__(self, epsilon:float=0.1, reduction='mean'):
        super().__init__()
        self.epsilon = epsilon
        self.reduction = reduction
    
    def forward(self, preds, target):
        n = preds.size()[-1]
        log_preds = F.log_softmax(preds, dim=-1)
        loss = reduce_loss(-log_preds.sum(dim=-1), self.reduction)
        nll = F.nll_loss(log_preds, target, reduction=self.reduction)
        return linear_combination(loss/n, nll, self.epsilon)

我们现在可以在我们的代码中使用这个类。 对于这个例子,我们使用标准的 fast.ai pets 例子。

from fastai.vision import *
from fastai.metrics import error_rate

# prepare the data
path = untar_data(URLs.PETS)
path_img = path/'images'
fnames = get_image_files(path_img)

bs = 64
np.random.seed(2)
pat = r'/([^/]+)_\d+.jpg$'
data = ImageDataBunch.from_name_re(path_img, fnames, pat, ds_tfms=get_transforms(), size=224, bs=bs) \
                     .normalize(imagenet_stats)

# train the model
learn = cnn_learner(data, models.resnet34, metrics=error_rate)
learn.loss_func = LabelSmoothingCrossEntropy()
learn.fit_one_cycle(4)

Tensorflow中使用方法时候只要在损失函数中加上label_smoothing的值即可,如下:

tf.losses.softmax_cross_entropy(
    onehot_labels,
    logits,
    weights=1.0,
    label_smoothing=0,
    scope=None,
    loss_collection=tf.GraphKeys.LOSSES,
    reduction=Reduction.SUM_BY_NONZERO_WEIGHTS
)
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值