时间复杂度
算法时间开销与问题规模 的关系T(n),常用大O表示法表示
算法复杂度分析比较
O(1)<O( log 2 n \log_2^n log2n)<O(n)<O(n log 2 n \log_2^n log2n)<O( n 2 n^2 n2)<O( n 3 n^3 n3)<O( 2 n 2^n 2n)<O(n!)<O( n n n^n nn)
算法时间复杂度满足规则
1.加法规则:
O(f(n))+O(g(n))=O(max((f(n),g(n)))
2.乘法规则
O(f(n))*O(g(n))=O(f(n)*g(n))
复杂度分类
三种复杂度:最坏时间复杂度、平均时间复杂度和最好时间复杂度
平均时间复杂度:考虑所有输入数据都等概率出现的情况。
一般只考虑最坏时间复杂度和平均时间复杂度,不考虑最好时间复杂度。
空间复杂度
即算法运行所需的内存空间大小,考虑空间复杂度时,需要找到所占空间大小与问题规模相关的变量。
算法原地工作:算法所需内存空间为常量,即S(n)=O(1)
注意:对于函数递归的内存开销来说:
当局部变量占据内存空间大小与问题规模无关时,空间复杂度 = 递归调用的深度(原因是每进行一次函数递归操作,会导致一份新的局部变量的声明,因此会占据内存空间,所以其内存空间的占用与递归深度成正比)
当局部变量占据内存空间大小与问题规模相关时,例如
此时S(n)=(1+n)n/2=O(
n
2
n^2
n2)