时间复杂度与空间复杂度

时间复杂度

算法时间开销与问题规模 的关系T(n),常用大O表示法表示

算法复杂度分析比较

O(1)<O( log ⁡ 2 n \log_2^n log2n)<O(n)<O(n log ⁡ 2 n \log_2^n log2n)<O( n 2 n^2 n2)<O( n 3 n^3 n3)<O( 2 n 2^n 2n)<O(n!)<O( n n n^n nn)

算法时间复杂度满足规则

1.加法规则
O(f(n))+O(g(n))=O(max((f(n),g(n)))
2.乘法规则
O(f(n))*O(g(n))=O(f(n)*g(n))

复杂度分类

三种复杂度:最坏时间复杂度平均时间复杂度最好时间复杂度
平均时间复杂度:考虑所有输入数据都等概率出现的情况。
一般只考虑最坏时间复杂度平均时间复杂度,不考虑最好时间复杂度

空间复杂度

即算法运行所需的内存空间大小,考虑空间复杂度时,需要找到所占空间大小与问题规模相关的变量。

算法原地工作:算法所需内存空间为常量,即S(n)=O(1)
注意:对于函数递归的内存开销来说:
当局部变量占据内存空间大小与问题规模无关时,空间复杂度 = 递归调用的深度(原因是每进行一次函数递归操作,会导致一份新的局部变量的声明,因此会占据内存空间,所以其内存空间的占用与递归深度成正比)
在这里插入图片描述
当局部变量占据内存空间大小与问题规模相关时,例如
在这里插入图片描述
此时S(n)=(1+n)n/2=O( n 2 n^2 n2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值