此书地址:
《【2024新书】深度学习 从零基础快速入门到项目实践 文青山 跟我一起学人工智能 机器学习算法原理代码实现教程 深度学习项目分析 深度学习 从零基础快速入门到项目实践》【摘要 书评 试读】- 京东图书
除深度学习外我还写了一本软件测试书。我大概是国内第1个,跨2个领域书籍的作者吧!
《Python软件测试实战宝典 系统覆盖5大软件测试技术主题,深解析软件测试的理论、方法、工具及管理方法,精准定位软件测试痛点》(智谷一川)【摘要 书评 试读】- 京东图书 (jd.com)
如何学习深度学习呢?
针对这个问题也许每个人都有不同的观点,本书的编排目录也就是我的学习过程。
大概是在2022年的时候,很偶然接触到这个领域,刚开始是没有什么信心觉得自己能够入门,因为这个领域十分的陌生,听起来也非常的高端,随便翻翻书,密密麻麻的数学公式真的看得头晕眼花。本着复杂的东西工作需要一定要搞懂的心态,然后立志坚定地开始了密集的学习,学习的过程是有点忙碌的,每天大概研究原理和看代码到23:00,周末也没有休息。
好在经过1个多月的样子,原来复杂的原理似乎懂了一些,根据原理看开源的代码也没有那么痛苦,也可以根据工作需要修改开源的代码实现某些功能,七七八八能够用了,但是自己觉得有点云里雾里的。赶巧在2022年底作为“新冠”最后阶段的密接人员在家闭关半个月,闲着无聊突发其想打算重写一些经典模型的代码,加强加深对于经典算法的理解。于是出于打发时光的目的,虽然代码写得很丑、可能还有较多错误之处,但好歹完成了本书大部分代码的主体。
然后又在机缘巧合之下跟出版社这边加上了好友,聊着、聊着就讨论到了如何学习深度学习,如何用最短的时间入门深度学习,也就有了此书的初衷。
因为定位0基础,所以准备了较多基础知识,本着更好的理解并在学习过程中逐步提高代码能力,也没有调用一些知名第3方集成库、或者直接解析开源代码,每个例子的每行代码都是经过自己理解(水平有限,可能有误)手敲过的,代码虽臭、但都有参考意义。
另外,阅读此书需要很强的数学吗?个人感觉读者只要会求导就行。本书涉及到的数学知识不够严谨。因为基本上对复杂的数学公式通过数值代入进行了“破坏性”计算,有着很详细的步骤(数学好的略过),这样做的目的是为了更好的理解。在编程的世界里,复杂的数学公式很多时候就是一个Python函数,作为应用层,个人觉得怎么算、严不严谨,不是极度重要的,理解它背后做了什么事、意义是什么,够用就行。
以上只是个人观点,如有不妥之处,都是我的理解有误,还请指正。最后,本人水平有限和时间有限,书中难免有不妥之处,恳请广大读者批评指正。
本书内容简介:
本书从Python基础入手,循序渐进地讲到机器学习、深度学习等领域的算法原理和代码实现,在学习算法理论的同时也强调了代码工程能力的逐步提高
本书共分为6个章节
第1章从零基础介绍Python基础语法、Python数据处理库NumPy、Pandas、Matplotlib、OpenCV的使用;
第2章,主要介绍了机器学习算法的原理并配有代码实例,方便在理解原理的同时也能写出代码;
第3章,主要介绍深度学习框架TensorFlow、Keras、PyTorch的API和网络模型的搭建方法,力保读者能够掌握主流深度学习框架的使用;
第4章,主要介绍了CNN卷积神经网络各种卷积的特性,并同时代码实战了多个经典分类网络;
第5章,主要介绍了目标检测领域中多个经典算法的原理,并配套展现了代码调试的过程,将算法原理与代码进行了结合,方便更深入的理解算法原理;
第6章,主要分享了深度学习项目的分析和实现过程。
本书目录:
1.13.2 Matplotlib绘直方图、饼图等... 61
3.3.6TensorFlow中gather取值... 186
3.4TensorFlow中的Keras模型搭建... 193
3.4.2基于tf.keras.Sequential模型搭建... 194
3.4.3继承tf.keras.Model类模型搭建... 196
3.5.2使用model.train_on_batch训练模型... 201
3.6TensorFlow中Metrics评价指标... 205
3.8.12PyTorch调用TorchMetrics评价指标... 227
5.11.4代码实现随机复制Label数据增强... 500
重点内容图形介绍: